1. Journals
  2. IJSTT
original research article

Lightweight Design and Structural Analysis of a Wheel Rim Using Finite Element Method and Its Effect on Fuel Economy and Carbon Dioxide Emission

Towhidul Islam 1 * , Shakik Ahnaf 1 , Md. Muntashir Mamun 1 , Abu Saleh Muhammad Musa 1

1Department of Mechanical Engineering Military, Institute of Science & Technology, Dhaka, Bangladesh

*Email: towhidul.mist@gmail.com
Wheel rims made of metal alloy considerably impact the vehicle’s overall weight. Consequently, employing alloys in the design of wheels results in higher fuel efficiency and lower carbon dioxide emissions. Weight reduction of vehicles also leads to better acceleration. Lightweight automotive design has been increasingly popular in recent years as a means of conserving energy and protecting the environment. The rim is an essential feature of the vehicle since it bears a substantial portion of its overall weight. A vehicle’s weight can be greatly reduced by using a lightweight rim. However, the impact of a lightweight rim on improved fuel economy and reduced carbon dioxide emissions has not been widely explored. In this study, a wheel rim has been designed, and a finite element model has been developed considering radial load, where tire pressure has also been considered. A practical experiment with identical parameters had also been carried out. The values of equivalent stress, strain, and deformation for a metal and an alloy which is steel and cast aluminum alloy (A356.0), respectively, have been compared. In terms of structural stability, steel and cast aluminum alloy have shown fairly similar results based on equivalent stress and deformation. However, the use of cast aluminum alloy has greatly decreased the rim’s weight as a result of its low density and high specific strength. Additionally, the aluminum alloy rim has shown superior fuel efficiency and lower carbon dioxide emissions. According to the findings, cast aluminum alloy rims are more feasible when building a vehicle wheel rim since they minimize the wheel’s and vehicle’s weight while maintaining structural strength. It leads to less fuel consumption, which can save fuel costs and is important for energy conservation.

pdf-logo Download PDF