1. IJSTT
  2. All Issues
  3. Volume 4, Issue 2

International Journal of Sustainable Transportation Technology

Volume 4, Issue 2

review article

A Critical Review on Lightweight Design of Battery Pack Enclosure for Electric Vehicles

Ashvin Dhoke, Amol Dalavi

Pages 53-62

An electric vehicle battery pack which is a gathering of battery modules which subsequently comprised of the battery cell is a primary source of control transmission for an Electric Vehicle (EV). The inappropriate design of the battery enclosure will cause many genuine issues, such as cracking, causing noise, or battery harm. At the same time, the weight of the battery enclosure is huge; in order to get better the driving range of the electric vehicle and diminish the influence of the battery on the vehicle dynamic performance and acceleration performance, it is essential to carry out the lightweight design of the battery enclosure. This paper reviews the multi-material battery enclosure design optimization, the multi- technologies, and a proficient Battery Management System (BMS) for compact battery pack design used to lightweight battery pack enclosure design; the multi-objective optimization approach for distinctive parameters of battery pack enclosure design optimization by diverse manufacturing techniques.
review article

Literature Review: Synthesis Methods of NiFe2O4 Nanoparticles for Aqueous Battery Applications

Fatih Izzul Haq, Muhammad Aldin Nur Zein, Rachel Gabriella, Silmi Ridwan Putri, Asep Bayu Dani Nandiyanto, Tedi Kurniawan

Pages 42-52

Today, the application of NiFe2O4 nanoparticles is increasing in the field of technology that is in great demand, thereby increasing the demand for industrial production. The use of NiFe2O4 nanoparticles can be applied in various technologies, including aqueous batteries. Therefore, an effective method for industrial production is needed. This paper aims to discuss and compare a more efficient method in the synthesis of NiFe2O4. The research method used is a literature review of 62 papers. There are several NiFe2O4 synthesis methods, namely Coprecipitation, Citrate Precursor Technique, Mechanical Alloying, Hydrothermal, Sonochemistry, Reverse Micelle, Sol-Gel, and Pulsed Wire Discharge. The results show that the effective synthesis method of NiFe2O4 is Hydrothermal. This is because the hydrothermal method is economically feasible, environmentally friendly, and has no requirement of high temperatures in the calcination process to produce the final product. The nanoparticle size is around 29.39 nm. This paper is expected to assist in selecting the synthesis method of NiFe2O4.