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Abstract  

This paper presents an application of sensor fusion methods based on Unscented Kalman filter (UKF) technique 
for solving train localization problem in rail systems. The paper first reports the development of a laboratory-scale 
rail system simulator which is equipped with various onboard and wayside sensors that are used to detect and 
locate the train vehicle movements in the rail track. Due to the low precision measurement data obtained by each 
individual sensor, a sensor fusion method based on the UKF technique is implemented to fuse the measurement 
data from several sensors. Experimental results which demonstrate the effectiveness of the proposed UKF-based 
sensor fusion method for solving the train localization problem is also reported. 
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1 Introduction 
The increase in human population and needs lead 
indirectly to the need for transportation, especially in 
densely populated urban areas. Rail transportation 
system has been considered as one of the major 
potential solutions to modern land transportation 
problems. Factors such as higher speed, shorter travel 
time, high operational flexibility with lower 
cost/energy consumption are some of the advantages 
offered by railway systems over other means of land 
transportation [1,2].  

Currently, the demand for train transportation services 
continues to increase and stimulates active research 
and rapid development of various technologies that can 
improve the operation of rail systems [3]. In particular, 
many studies and research activities have currently 
been done to find methods for increasing the carrying 
capacity, reducing the maintenance costs, as well as 
ensuring the high reliability and safety of the rail 
systems (cf. e.g. [3–5] and the references therein). 
More recently, advanced automation technologies have 
also been applied in railway systems through the 
introduction and use of Automatic Train Control 
(ATC) system. One significant feature of the ATC 
system is that the train operation is now mainly 
controlled by the computer instead of human [5]. 
Specifically, an embedded computer system on train 
(called onboard unit) is used to control the 
acceleration/deceleration of the train vehicle as it 
moves on the rail track. Clearly, the ability to use such 
a computerized system to automatically decide and 

execute movement commands heavily relies on the 
various position and velocity data that are measured 
using sensors installed on the train. It is thus clear that 
highly accurate measurement data from sensors are 
critically needed to achieve high precision control and 
assure reliable and safe operation of the rail system.  

Due to the requirement of safety-critical operation, the 
use of high precision position and velocity sensors is 
considered to be a critical need in railway system [2]. 
Some of the commonly used sensors in rail systems 
include the transponder, axle counter, Inertial 
Navigation System (INS) and Global Positioning 
System (GPS) [2–3]. It is, however, important to 
realize that each of these sensors has its own 
advantages and weaknesses and so using their 
individual utilization may result in unsatisfactory 
results. One potential remedy for the limitation of 
relying only on a sensor measurement is the use of 
sensor fusion method [6–13]. In essence, sensor fusion 
is a method for combining sensory data or data derived 
from sensory data such that the resulting information is 
better (in a suitable sense) than what would possibly be 
achieved when these sources were used individually 
[6]. By using the sensor fusion method, the measured 
position and velocity data from sensors are expected to 
be more accurate. 

Sensor fusion methods have been widely used in 
applications which involve automation technologies 
such as monitoring, target tracking, surveillance or 
robotics. An early application of sensor fusion in rail 
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systems was introduced by Mirabadi et al. [7] wherein 
a fusion scheme for several measurements was used 
for train position and velocity estimation. In a more 
recent study, experimental result when using sensor 
fusion for railway localization was reported in [8]. 

This paper discusses some results of our experimental 
study in using sensor fusion method based on 
Unscented Kalman Filter (UKF) technique [6] to solve 
the train localization problem. In our experiment, a 
miniature train was developed and equipped with 
several sensors that are used as the train localization 
module. The used sensors include an Indoor 
Positioning System (IPS) for global position sensor, 
Inertial Measurement Unit (IMU) [14] to measure 
orientation of the train, and Radio Frequency 
Identification (RFID) sensor for train detection system. 
The data from these sensors are then fused using a 
UKF algorithm that was proposed by Freillard et al. in 
[9] to give better position and velocity estimates. 
Simulation results based on real experimental data are 
shown to illustrate the effectiveness of the proposed 
fusion method. 

The remainder of this paper is structured as follows. 
Section 2 reviews and formulates the stochastic 
estimation problem in the context of sensor fusion 
techniques. Section 3 presents the concepts and 
algorithm of UKF. Section 4 describes the 
experimental setup used to implement the UKF-based 
sensor fusion method for solving the train localization 
problem. Section 5 gives the experimental results. 
Section 6 concludes the paper with remarks and 
discussion. 

2 Preliminaries 
This section briefly reviews the notion of stochastic 
estimation in Bayesian inference framework and 
formulates this estimation problem within the context 
of sensor fusion methods.  

2.1 Stochastic estimation 
Consider a dynamical system which evolves according 
to the following nonlinear discrete-time differential 
equation: 

𝑥"#$ = 𝑓 𝑥", 𝑢", 𝑣" , 𝑥 0 = 𝑥+, (1a) 

𝑦" = ℎ 𝑥", 𝑛"  (1a) 

In (1), 𝑥", 𝑢" and 𝑦" denote, respectively, the states, 
input and output/measurement at discrete time 𝑘 =
0,1,2,⋯ Variables 𝑣" and 𝑛" denote process and 
measurement noises, respectively, whereas both 𝑓 ∙  
and ℎ ∙  are known functions. Our objective in this 

paper is to solve the stochastic estimation problem of 
(1). Specifically, given noisy measurement 𝑦" of the 
system, our goal is to characterize the statistics 
(especially the first two moments) of the state 
variables vector 𝑥".  

One solution to the above estimation problem is 
defined by the optimal estimate 𝑥" of 𝑥" which 
minimizes the mean-squared estimation error. This 
estimate is known as the Minimum Mean-Squared 
Error (MMSE) estimate and is formally defined as: 

𝑥" = 𝐸 𝑥" 𝑌"  (2) 

with 𝐸 ∙ ∙  denotes the conditional expectation and 𝑌" is 
the available measurements up to time 𝑘. The estimate 
in (2) can be obtained from the aposterior distribution 
of 𝑥" which, by Bayes’ rule, can be determined by the 
following Bayesian recursion [6]: 

P 𝑥" 𝑌" =
P 𝑥" 𝑌"7$ P 𝑦" 𝑥"

P 𝑦" 𝑌"7$
 (3a) 

with P ∙ ∙  denotes the conditional probability while 
P 𝑥" 𝑌"7$  and P 𝑦" 𝑌"7$  satisfy: 

𝑃 𝑥" 𝑌"7$ 		= 𝑃 𝑥" 𝑥"7$ 𝑃 𝑥"7$ 𝑌"7$ 𝑑𝑥"7$ (3b) 

𝑃 𝑦" 𝑌"7$ = 𝑃 𝑥" 𝑌"7$ 𝑃 𝑦" 𝑥"  (3c) 

and P 𝑥" 𝑥"7$  and P 𝑦" 𝑥" , respectively, are 
determined by the model in (1a) and (1b).  

For arbitrarily distributed noises 𝑣" and 𝑛" in (1), the 
analytical solution of (3) is generally not available and 
so the recursion in (3) is usually solved using Monte 
Carlo type simulations. However, if these noises 
satisfy the Gaussian distribution, then (3) can be 
simplified into the following recursive computation of 
𝑥" and its covariance (𝐶<=) [6]: 

𝑥" = 𝑥"7 + 𝐊" 𝑦" − 𝑦"7  (4a) 

𝐶<= = 𝐶<=
7 + 𝐊"𝐶B=𝐊"

C (4b) 

where 𝑥"7 and 𝑦"7 are the prediction of both 𝑥" and 𝑦", 
respectively, while 𝐊" is a gain factor. In particular, 
the optimal values (in MMSE sense) of 𝑥"7, 𝑦"7 and 𝐊" 
satisfy [6]: 

𝑥"7 = 𝐸 𝑓 𝑥"7$, 𝑢"7$, 𝑣"7$  (5a) 

𝑦"7 = 𝐸 ℎ 𝑥", 𝑛"  (5b) 
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𝐊" = 𝐶<=B=𝐶B=B=
7$  (5c) 

in which: 𝑦" = 𝑦" − 𝑦"7.  

2.2 Problem formulation 
Note in the Bayesian iteration (4) – (5) that one source 
of complexity is the computation of the expectations 
(5a) – (5b). When the system and output models in (1) 
are linear, the optimal MMSE estimate (2) is given by 
Kalman filter algorithm. When model (1) is nonlinear, 
the EKF may be used to its linearized, first order 
approximation. The use of low order approximation in 
EKF may, however, results in suboptimal or even 
divergent estimates. The UKF offers a remedy to this 
issue by proposing the use of a so-called Unscented 
Transformation (UT) to compute the estimate in (2). 
This paper is interested in formulating the UKF 
method for solving the estimation problem in a 
discrete-time dynamical system by using measurement 
data from several sensors. In particular, this paper 
examines the use of UKF-based sensor fusion method 
to estimate the position and velocity of train vehicle 
using several onboard and wayside sensor data. 

3 Unscented Kalman Filter (UKF) 
This section reviews the underlying principle and 
algorithmic implementation of UKF. The UKF method 
was originally developed to overcome issues that are 
often encountered in EKF. The basic idea in UKF 
method is the use of the so-called UT to form a set of 
minimum and carefully chosen sample points called 
sigma points which will then be used to estimate the 
distribution of a Gaussian random variable. 

3.1 Unscented transformation 
To understand the basic concept of UT, let 𝑥 be an n-
dimensional random variable with mean 𝑥 and 
covariance 𝑃<. Consider another random variable 𝑦 =
𝑓 𝑥  which is obtained by propagating 𝑥 through a 
nonlinear function 𝑓 ∙ . Suppose our interest is in 
characterizing the statistics of	𝑦. The UT can be used 
for this purpose through the use of a set of sigma 
points that are constructed and stacked in a sigma 
matrix 𝐒<  with 2𝑛 + 1  sigma vectors 𝜎F 𝑖 = 1,⋯ , 𝑛  
below as it column elements: 

𝜎+ = 𝑥 (6a) 

𝜎F = 𝑥 + 𝑛 + 𝜃 𝑃<
F
 (6b) 

𝜎F#I = 𝑥 − 𝑛 + 𝜃 𝑃<
F7I

 (6c) 

in which 𝜃 = 𝛿K 𝑛 + 𝛾 − 𝑛  denotes a scaling 
parameter, 𝛿 is a small constant specifying the 
distribution of the sigma points around 𝑥 and 𝛾 = 3 − 𝑛 
is also a scaling parameter.  

The UKF approximates the statistics (i.e., first two 
moments) of 𝑦 by computing the weighted sample 
mean and covariance of another set of random 
variables YO which results from propagating the sigma 
point 𝜎F through an appropriate function of the form: 

YO = 𝑓 𝜎F ,  𝑖 = 1,⋯ ,2𝑛 (7) 

More specifically, the mean and covariance of 𝑦 is 
approximated from the samples of YO as:  

𝑦 ≈ 𝑤F$𝑌FKI
FR+    (8a) 

𝑃B ≈ 𝑤FK 𝑌F − 𝑦 𝑌F − 𝑦 CKI
FR+    (8b) 

where the weights 𝑤F with 𝑖 = 1,⋯ ,2𝑛 for the first and 
second moments of 𝑦 are defined as: 

𝑤+$ =
S

I#S
   (9a) 

𝑤+K = 1 + 𝑤+$ + 𝛿K − 𝜂  (9b) 

𝑤F$ = 𝑤FK =
1

2 𝑛 + 𝛾
 (9c) 

with 𝜂 is a parameter which captures prior information 
about the distribution of 𝑥 (e.g., 𝜂 = 2 if 𝑥 has a 
Gaussian distribution) [6,13]. 

3.2 UKF algorithm 
The UKF approach to computing the estimate (2) for 
the process in (1) basically applies the aforementioned 
UT on a vector of augmented state variables below: 

𝑧" = 𝑥" 𝑣" 𝑛" C (10) 

Correspondingly, the sigma matrix zS  for this 
augmented state should also be generated by the UT 
with respect to each element of kz in (10). Thus, this 
sigma matrix (𝐒V) is defined as: 

𝐒V = 𝐒< 𝐒W 𝐒I C (11) 

where each 𝐒<,𝐒W and 𝐒I is constructed iteratively 
according to the iteration in (6). The UKF algorithm 
essentially consists of four main steps, namely the 
initialization, sigma point generation, prediction and 
correction or update steps. The routines in each of 
these steps are described below [6,13]. 
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Step 1: Initialization 

Initialize the augmented state estimate 𝑧+ and the 
corresponding covariance 𝐶V+ as:  

𝑧+ = E 𝑥+ 0 0  (12a) 

Where: 𝑥+ = 𝐸 𝑥+  

𝐶V+ = E 𝑧+ − 𝑧+ 𝑧+ − 𝑧+ C

=
𝐶<+ 0 0
0 𝐶W 0
0 0 𝐶I

 (12b) 

with 𝐶<+ = E 𝑥+ − 𝑥+ 𝑥+ − 𝑥+ C , while 𝐶W and 𝐶I are 
the covariance of 𝑣" and 𝑛", respectively. 

Step 2: Sigma Point Generation 

For 𝑘 = 1,⋯ ,∞, generate the sigma matrix of the 
augmented state as follows: 

𝐒"7$V =

𝑧"7$
𝑧"7$ + 𝑛 + 𝜃 𝐶"7$V

𝑧"7$ − 𝑛 + 𝜃 𝐶"7$V
 (13) 

Step 3: Prediction 

For	𝑘 = 1,⋯ ,∞, propagate each element of the sigma 
matrix of 𝑧" iteratively through model equation (1) to 
get the updated sigma matrix Σ"|"7$<  of the state and the 
corresponding measurement samples 𝑌"|"7$ below: 

𝐒"|"7$< = 𝑓 𝐒"7$< , 𝑢"7$, 𝐒"7$W  (14a) 

𝑌"|"7$ = ℎ 𝐒"|"7$< , 𝐒"7$I  (14b) 

Use the above 𝐒"|"7$<  and 𝑌"|"7$ to compute the 
prediction of the state estimate, covariance and output 
variables in the following iteration: 

𝑥"7 = 𝑤F$
KI

FR+

𝐒F,"|"7$<  (15a) 

𝐶"7 = 𝑤FK
KI

FR+

𝐒F,"|"7$< − 𝑥"7 𝐒F,"|"7$< − 𝑥"7
C

 (15b) 

𝑦"7 = 𝑤F$
KI

FR+

𝑌F,"|"7$<  (15c) 

Step 4: Correction 

Update the state and the covariance of the estimate 
with the following iteration: 

𝑥" = 𝑥"7 + 𝐊" 𝑦" − 𝑦"7  (16a) 

𝐶" = 𝐶"7 − 𝐊"𝐶B=B=,𝐊"
C (16b) 

Where: 

𝐾" = 𝐶<=B=𝐶B=B=
7$   

𝐶<=B= = 𝑤FK
KI

FR+

𝐒F,"|"7$ − 𝑥"7 𝐒F,"|"7$ − 𝑦"7
C

 
 

𝐶B=B= = 𝑤FK
KI

FR+

𝑌F,"|"7$ − 𝑦"7 𝑌F,"|"7$ − 𝑦"7
C

 
 

4 System Description and Setup 

4.1 System architecture 
Figure 1 shows the train miniature which was 
developed for our experiment and equipped with 
various instruments to mimic the actual functionality 
and operation of a real railway system. On the wayside 
of the miniature track, four IPS stationary beacons and 
six RFID tags are used simultaneously as the train 
localization system. 

 
Figure 1 Experimental train miniatures 

The stationary beacons play the role of small satellites 
which periodically transmits signal to the receiver; 
reminiscent to GPS functionality. The IPS used in our 
setup is the Marvelmind Indoor Navigation System 
(MINS) developed by Marvelmind Robotics [15]. The 
MINS’ working principle is based on the propagation 
delay of ultrasonic waves and can provide precise 
location (±2cm accuracy) of an indoor object. The 
GPS was not used in the setup due to its low 
performance in locating indoor moving objects. 
Specifically, we found out that the GPS could not meet 
the miniature's accuracy requirement (which is 25 
times smaller than what can be provided by the best 
GPS).  
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The RFID tags were located on several known 
positions on the track and play the role of axle 
counters which detect the presence of a train vehicle in 
a particular trail segment. Figure 2 shows the 
schematic of the miniature with the locations of 
stationary beacons and RFID tags. 

 
Figure 2 Schematic of the miniatures 

The onboard unit of the miniature is equipped with an 
IMU containing gyroscope and accelerometer, a 
mobile IPS receiver beacon, an RFID reader and an 
Arduino microprocessor board. The mobile IPS beacon 
continuously receives signals from the stationary one 
containing information about its position in the two-
dimensional Cartesian coordinate system. The RFID 
reader reads the RFID tags that it passes through and 
uses the tags position information to correct the train 
position. Both the gyro and accelerometer measure the 
train orientation with high sampling rates to provide 
aided positional information in the absence of RFID 
tags. All of these sensors information is collected and 
sent to the computer by the Arduino board to be fused 
and processed using the UKF algorithm. 

4.2 Train kinematic model 
The implementation of the UKF-based sensor fusion is 
conducted using the kinematic model of the 
miniature’s train. For this purpose, a first-order 
differential equation model below describing the 
kinematics of the train is used: 

𝑝" = 𝑝"7$ + 𝑣" ∙ ∆𝑡 (17) 

where 𝑝" denotes the estimate of the train position at 
time 𝑘 while 𝑝"7$ and 𝑣" denote, respectively, the train 
position and velocity at time 𝑘 − 1. Expanding the 
kinematic (17) to two-dimensional Cartesian 
coordinate, one has: 

𝑝"<

𝑝"
B = 𝐈K×K

𝑝"7$<

𝑝"7$
B + ∆𝑡 ∙ 𝐈K×K

𝑣"<

𝑣"
B  (18) 

where 𝐈K×K denotes a 2×2  identity matrix while the 
input velocities 𝑣"< and 𝑣"

B in the x  and y  coordinates, 
respectively, satisfy: 

𝑣"< = 𝑣" cos ∅,  𝑣"
B = 𝑣" sin ∅ (19) 

with 𝑣" denotes the train speed at time 𝑘 and ∅ is the 
train orientation which in particular is defined as the 
following yaw value: 

∅ = 𝜔i 𝑑𝑡 (20) 

which can be computed from the measured angular 
velocity obtained by the gyro. Finally, it is assumed 
that the available measurements include the position in 
𝑥 − 𝑦 coordinate, i.e.: 

𝑦" = 𝐈K×K𝑝" (21) 

The UKF method was implanted to compute the 
estimation of the train position based on the position 
measurements 𝑦" which has obtained from the RFIDs. 
The estimate was computed using an assumption that 
the variance of the RFID measurement is one-tenth of 
the variance of the gyroscope. The covariance matrices 
used in the UKF were therefore assumed to be 𝐶W =
𝐈K×K ∙ 𝑣𝑎𝑟 𝑣  and 𝐶I = 𝐈K×K ∙ 𝑣𝑎𝑟 𝑛 ∙ ∆𝑡 

5 Experimental Results 

5.1 Individual sensor estimation 
In the experiment, we first examine the results of 
position estimation that are obtained by each 
individual sensor. 

For the IPS sensor experiment, one mobile beacon was 
installed on the moving train while four stationary 
beacons were installed at the four corners of the 
miniature’s platform. As the train moves on the track, 
the MINS was used to estimate the train position and 
the obtained result is plotted against the actual train 
position in Figure 3. It can be seen in this figure that 
the IPS estimates closely aligns the actual track of the 
miniature. 

 
Figure 3 Estimation result of IPS sensor 
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In the second experiment, the IMU sensor is used to 
estimate the train position and velocity based on the 
measured train acceleration and yaw. Figure 4 shows 
one example of the measured yaw obtained from the 
IMU data. This data is then used to estimate the train 
velocity as shown in Figure 5. 

 
Figure 4 Measured yaw from IMU sensor 

 
Figure 5 Train velocity estimate 

The velocity estimate is then projected onto the train 
position with respect to the track. The obtained 
estimate of the train position based on the IMU sensor 
data is plotted in Figure 6. This plot shows that the 
resulting train position poorly estimates the actual train 
track. 

 
Figure 6 Estimation result of IMU sensor 

Based on the results obtained from individual sensor 
experiment, it is clear that improvement is needed for 
the case of IMU-based position estimation. For this 
reason, another experiment was done to implement the 
sensor fusion algorithm with the goal of improving the 
result obtained from the IMU-based estimate. 

5.2 Estimation using sensor fusion 

In the third experiment, we implemented the UKF-
based sensor method to estimate the train position 
based on the fusion of measurement data from IMU 
and RFID. In this regard, the RFID data is used to 
correct and improve the IMU estimate through the use 
of UKF method described in Section 3. 

Figure 7 shows the obtained position estimate of the 
train when using the UKF-based sensor fusion method. 
It is clear from the result plotted in this figure that the 
proposed UKF-based sensor fusion method for 
estimating the train position outperforms the IMU-
based one.  

Performance comparison between different estimation 
methods that were examined in the experiments was 
also performed. For this purpose, the Root Mean 
Squared Error (RMSE) is used as the performance 
criterion. Table 1 lists the RMSE of each approach 
when used to estimate the train position. It can be seen 
that the UKF-based estimation method gives the 
smallest RMSE in both the x and y axis and thus 
outperforms the single sensor approach based on either 
the IPS or IMU sensor. 

 
Figure 7 Estimation result obtained using UKF-
based sensor fusion 

Table 1 Summary of RMSE 

Estimation Method Axis RMSE 

UKF-based  
IMU + RFID 

x 0.02897483 

y 0.02849436 

IPS Sensor 
x 0.06389007 

y 0.05212586 

IMU Sensor 
x 0.10260048 

y 0.03589154 

6 Remark and Discussion 
This paper has presented some results from an 
experimental application of UKF-based sensor fusion 
method when used to solve the train localization 
problem in railway system. Through the combination 
of measurement data from an IMU sensor and RFID 
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system, it was shown that the results obtained using 
the proposed sensor fusion method improve those 
obtained using individual sensor measurement data. 
The proposed sensor fusion method also outperforms a 
global IPS sensor system in term of the resulting mean 
squared error. 
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