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Abstract  

In transportation technology, the development of electric vehicle is growing rapidly. In the future, the availability 
of electrical power is crucial because every electric tool needs electrical power. Power plant must provide electrical 
power for all consumer include an electric vehicle. Sustainability of electrical power transmission and distribution 
must be considered as critical due to its high power consumption in the community. One of the problem to supply 
electrical power is how to keep the system’s voltage stability. Several variations on the load pattern and topological 
can lead to a substantial poor impact on the system. However, generation cost must be considered by utilities’ 
operator. This paper demonstrates a recently developed metaheuristic method called Chaotic Firefly Algorithm 
(CFA). Our simulation shows that this method may perform better than several well-known metaheuristic methods. 
Therefore, CFA may become a promising method to solve optimal power flow considering voltage stability cases. 
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1 Introduction 
The electric vehicle is growing rapidly in modern 
transportation technology. This condition makes the 
availability of electric vehicle charging very important. 
Therefore, the availability of electric power is the most 
important that we urge to produce and manage. This is 
why the sustainability of this power transmission and 
distribution is critical. In a regulated power system, 
utility’s operators had to control the system in order to 
meet this demand. There are various objectives that 
must be achieved. Some of them are to minimize the 
power plant’s operational cost [1,2], power losses [3] 
and to maximize the system’s distance to voltage 
collapse [2]. There are also various constraints to be 
considered. Some of them are the generator, line, and 
voltage limits [1]. This problem is categorized as an 
optimization problem called Optimal Power Flow 
(OPF) problem in many works of literature [1-3]. 

One of some objectives considered in the OPF 
problem is the system’s distance to voltage collapse 
[2]. Voltage collapse usually occurs after voltage 
instability. Voltage instability itself is a condition 
when the system is unable to maintain its steady 
acceptable voltages during normal operation and after 
being subjected to a disturbance [4]. Adverse impact 
from voltage collapse is low voltage profile in several 
parts of the system [4], in other words, decreased 
power quality. One of the well-recorded case studies 
on voltage collapse’s impact is given in [5]. It is 

explained that some busses’ voltage drops from 500 
kV to 370 kV in only 20 minutes, caused a massive 8 
GW loss of load to recover the system. 

There are several methods to solve the OPF problem. 
Generally, they are categorized as traditional and 
metaheuristic methods [6]. Each type of methods had 
several unique characteristics. One of them is their 
applicability when the problem is injected with some 
additional considerations. Traditional methods are 
unable to apply to those problems because these 
methods are derived with fixed assumptions and 
problem definition. Additional considerations that not 
defined nor assumed before must be modeled 
mathematically before traditional methods may start. 
This condition may turn into a disadvantage when it’s 
too hard to construct their mathematical models, or 
their models are too complicated. In other hand, 
metaheuristic methods have several fixed mechanisms 
that not depended by the problem. It means that the 
problems did not affect how these methods work [7]. 
In some cases, when there are many complicated 
mathematical models encountered at the problem, this 
characteristic may become a huge advantage. 

Since the Genetic Algorithm (GA) is a metaheuristic 
method, developed in 1960-1970 [8], there are many 
algorithms had been emerged. Some of them also 
applied to solve OPF problems [9-11], and even there 
is a review on metaheuristic methods used in various 
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cases of OPF problem [6]. In [9], Abido demonstrated 
Particle Swarm Optimization (PSO) to solve the OPF 
problem with various objectives from reducing costs to 
voltage profile improvement.  

In [10], Yang et al. demonstrated his famous method 
Firefly Algorithm (FA) to solve the economic dispatch 
problem, one of the subproblems of OPF. Reference 
[10] even gave some examples with mixed-variable 
cases which not related to economic dispatch. In [11], 
Vanitha et al. presented a hybrid Differential Evolution 
(DE) with Weighted Additive Fuzzy Goal 
Programming (WAFGP) to determine the best 
placement for STATCOM. The method is used to 
optimize the system’s loadability when minimizing its 
power losses and STATCOM’s installation cost. These 
three researches show the flexibility of metaheuristic 
methods able to be applied in various form of 
problems. 

In this paper, we introduce a recently developed 
metaheuristic algorithm called Chaotic FA (CFA) for 
solving the OPF problem with considering voltage 
stability. This algorithm is an improved version of FA. 
To compare its performance to solve our problem, we 
also used FA and Accelerated PSO (APSO) to solve a 
similar problem. Simple statistical analyses will be 
performed as a comparison method to determine the 
best algorithm from those.  

2 OPF Problem 
OPF problem goal is to find the optimal settings for a 
given power system network to optimize some 
objectives such as total generator cost, system loss, bus 
voltage deviation, emission of generating units, 
number of control actions, and load shedding. On the 
other hand, the setting also satisfies the power flow 
equations, system security, and equipment operating 
limits [3]. There are several control variables that may 
be utilized to achieve this goal. Some of them are 
generators’ real and reactive power output and voltage, 
transformer tap changing settings, phase shifters, 
switched capacitors, and reactors [3]. OPF problem of 
a power system has various formulations depending on 
considered objectives, constraints, and control 
variables. In this section, we define the formulation for 
this paper. 

There are two objectives employed in this paper. They 
are total generation cost and power losses. In this 
paper, the total generation cost function is given in (1). 

𝑓" 𝑃$ = 𝑎𝑃$'(
)$
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where fc(PG) is total generation cost function, NG is the 
number of generating thermal units, PGk denotes real 
power output of k-th generating thermal units, and a, b, 
and c are input-output characteristic coefficients [3]. 
Power losses function considered in this paper is given 
in (2). 
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where fl(PG) denotes power losses function, ND is 
number of load bus, and PLj is real power demand at j-
th bus. 

In most works of literature discuss OPF problems, 
there are 4 four main constraints which have to be 
fulfilled: power flow equations, generator limits, line 
flow limits, and voltage limits [1-3]. Also, we define 
these constraints used in this paper. Power flow 
equations are defined in (3) and (4) for real and 
reactive power, respectively.  
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where Vi is voltage at i-th bus in per-unit (p.u.) unit, Yik 
denotes an element on i-th row and k-th column of 
admitance matrix in p.u. unit, and NB is number of 
busses. Re{x} and Im {x} are operators to determine 
real and imaginary value of complex number x [1]. 

Generator and voltage limits are given in (5) and (6), 
respectively. Generator limits applied to all thermal 
units that become control variable and voltage limits 
applied to all busses. max and min superscript means 
the maximum and minimum value of the mentioned 
variable, respectively [1]. 

𝑃$>3? ≤ 	𝑃$ ≤ 𝑃$>BC (5) 

𝑉3>3? ≤ 	𝑉3 ≤ 𝑉3>BC (6) 

3 L-Index 
There are several methods to estimate the power 
system’s voltage stability. One of them is classical L-
index. L-index is an indicator developed by Kessel and 
Glavitsch in 1986 to estimate power system’s voltage 
stability [12]. According to the definition of voltage 
stability indices in [13], this indicator is categorized as 
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a system variable based indices. It caused by usage of 
the information on a system such as bus voltage and 
power flow on the line. Therefore, L-index is capable 
of discovering weak busses in low computing time 
according to system variable based indices 
characteristic given by [13]. In this paper, we are using 
this index as a constraint for our problem. 

L-index is defined for all load busses using (7) [12]. 

𝐿0E = 𝑎𝑏𝑠 1 −
𝐹0'𝑉'I)$

'*+

𝑉0E
 (7) 

where Ljb is L-index value for j-th load bus, Vkg is 
voltage value on k-th non-load bus, and Vjb is voltage 
value on j-th load bus. abs{x} is an operator to 
determine absolute value from complex number x. F is 
a matrix defined in (8), where Fjk is an element from F 
matrix on j-th row and k-th column [12]. 

𝐹 = −𝑌//J+𝑌/$  (8) 

In (9), 𝑌// is a part of the admittance matrix that 
defines admittance value between two load busses. 
Meanwhile, 𝑌/$  is a part of the admittance matrix that 
defines admittance value between load busses and non-
load busses.  

A power system estimated as unstable if maximum L-
index value achieved is more than one [12]. However, 
in this paper, we consider another parameter Lmax 
where 0 ≤ Lmax < 1. This parameter ensures the weakest 
bus is not too weak when the disturbance occurred; 
thus, it may reduce the variation of voltage instability. 
Finally, our L-index limit is given in (9): 

𝑚𝑎𝑥 𝐿0E ≤ 𝐿>BC (9) 

4 CFA 

CFA is the most recent developed metaheuristic 
method. This algorithm was designed by Gandomi et 
al. in 2013 for solving optimization problems [14]. 
This algorithm essentially runs like FA; however, it 
replaces constant parameters on FA with varying 
parameters at each iteration using chaotic sequences 
[14]. 

There are two main mechanisms in CFA. The first one 
is the FA’s movement. For an i-th firefly or solution 
candidate, compare with another j-th firefly. If i-th 
fireflies’ fitness value is worse than j-th fireflies’ 
fitness value, then move it using (10) and define its 
new fitness value [8, 14]. 

𝑥3 = 𝑥3 + 𝛽M𝑒JNO
P 𝑥0 − 𝑥3 + 𝛼𝜀	 (10) 

where xi is i-th firefly position vector, β0 denotes 
attractiveness parameter, γ is light absorption 
coefficient, r is the distance between two fireflies, α is 
randomization parameter, and ε denotes random 
numbers drawn from Gaussian distribution [14]. It is 
worth pointing out that distance r defined here is not 
limited to Euclidean distance [15]. 

The other mechanism of CFA is applying a chaotic 
sequence to vary some parameters. In this paper, we 
vary β0 value at the end of iteration using Gauss Map 
as suggested by [14]. Chaotic gauss map is given in 
(11), where kn is a number generated at n-th iteration 
and operator [k] is floor function [14]. 

𝑘?T+ =
0

+
'U
− +

'U
									  𝑘? = 0

𝑘? ≠ 0 (11) 

Pseudocode of this algorithm is given in Figure 1. 

 
Figure 1 CFA’s pseudocode 

5 Results and Discussion 

Before we show our simulation result, let us describe 
the system used in this paper. Here, we use 150 kV 
Mahakam transmission power system installed at East 
Kalimantan [16]. However, load pattern case study 
considered here is a bit different. Load pattern case 
study considered here is the same as [16], an additional 
50 MVAR reactive power on bus 1. This addition will 
increase voltage instability variation to be occurred, 

	 1. Objective function f(x), x = (x1,x2,...,xd)T 
and constraints given 
2. Define α, β, dan γ, maximum iteration 

IterMax, chaotic map used (in this case 
Gauss Map) 

3. Initiate fireflies’ starting positions xi 
4. Compute fireflies’ brightness/fitness 

f(xi) 
5. Determine the brightest/best firefly, it 

called global best for now 
6. Iter = 1 (Iteration count) 
7. while Iter ≤ IterMax 
8.     for i = all fireflies 
9.        Nfor j = all fireflies except i 
10.            if f(xi) > f(xj) 
11.               Compute r and use (10) 
12.               Define its new brightness 

f(xi)  
13.            end  
14.       Nend for 
15.    end for 
16.    Define new global best 
17.    Use (11) 
18. end while 
19. Returns global best 
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according to [4]. Furthermore, to counter this 
additional reactive power, we simulate a capacitor 
bank with 50 MVAR maximum capacity installed in 
bus 1. In this paper, there are four values of control 
variables that need to search: Real power generation 
(PG) at bus 3, 5, and 12 also capacitor capacity (Qcap) 
at bus 1. Here we also set Lmax = 0.2. 

Table 1 to 3 are given to clarify all needed data for our 
simulation, where Table 1 and Table 2 are exactly 
same with [16]. As shown in Table 2, each variable 
has different search ranges. This may cause slow 
movement in some variables with large search range 
when γ is not well-defined. In order to counter it, we 
map our solution into [-1,1] so γ may give uniform 
effect to all control variables. 

Table 1 Line impedance data for each line 

Bus Number 
Resistance (p.u.) Impedance (p.u.) Susceptance (p.u.) 

From To 
1 2 0.058 0.167 0.002 
2 3 0.016 0.048 0.0008 
3 4 0.016 0.048 0.0008 
4 5 0.185 0.549 0.009 
5 6 0.020 0.060 0.001 
5 9 0.032 0.094 0.001 
6 7 0.038 0.115 0.002 
7 8 0.056 0.162 0.002 
9 10 0.017 0.052 0.0008 

10 11 0.111 0.328 0.005 
10 12 0.221 0.656 0.011 

Table 2 Generator characteristics and cost function 

Bus A B c 
Real Power Generation 

Min. (MW) Max. MW) 
3 -16873 2288.5 -15245 41 100 
5 0 1658.7 0 20 80 
7 0 2213.2 0 11 190 

12 0 2628.8 0 1.74 50 

Table 3 Load data for each bus 

Bus 
Load 

Real Power (MW) Reactive Power (MVAR) 
1 53.994 68.396 
2 33.925 19.374 
3 0 0 
4 16.222 11.519 
5 23.264 4.385 
6 63.642 32.866 
7 57.116 8.033 
8 5.547 4.790 
9 15.331 6.368 

10 -2.021a 2.785 
11 5.129 9.759 
12 15.452 4.541 

a. A negative value means supplying instead receiving power 

There are two other metaheuristic methods used to 
compare CFA. They are its original FA form and 
APSO. Table 4 is given to define parameters employed 
for all used method. In order to define particle’s fitness 
value, here we use weighted sum approach, using cost 
as the reference.  

Since OPF is a constrained problem, here we apply 
penalties to fitness value for each parameter that not 
fulfill the constraints given in Section II and III. All 
simulations are performed by Personal Computer with 
3.4 GHz 4 core processor and 16 GB RAM running in 
Windows 10 operating system. 
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Table 4 Parameters used on this paper 

Parameters CFA FA APSO 
Particles/fireflies 

used 
20 

Number of 
Iterations 

20 

Specialized 
Parameters 

β0 = 0 – 2a β0 = 1 α = 0.5 
γ = 0.5 γ = 0.5 β = 0.5 
α = 0.5 – 

0.01b 
α = 0.5 – 

0.01b 
 

a. Changed at the end of iterations. Starting value may be randomized 
b. Decreased exponentially 

5.1 Cost minimization 

Our first objective needs to be optimized for reducing 
generation cost as low as possible. Our simulation 
result is given in Table 5. All parameters given in 
Table 5 are rounded at seven digits to help to show 
their differences.  

As can be seen in Table 5, each method gives an 
extremely close result. It motivates us to look at more 
numbers behind decimal point at each fitness values. 
This treatment, along with statistical analysis result, is 
applied in the next paragraph. However, at least some 
control variable values are obtained, and their results 
are almost the same. The result shows the 
competitiveness of these three methods. 

Table 6 shows statistical analysis to compare each 
method. All numbers given in Table 6 are fourth to 
ninth number behind decimal point to illustrate their 
difference more clearly. To help readers to read Table 
6, “append” number given there to the right of 
1086266.37. For instance, CFA’s average fitness value 

given on Table 6 is 278306. Thus, CFA’s average 
fitness value is 1086266.37. As shown in Table 6, 
CFA and FA present an extremely close performance, 
although FA gives more “dense” results. On the other 
hand, APSO performs a bit worse than two other 
methods. However, the differences are too small; 
hence, it may be omitted. 

Figure 2 given below is the convergence curve of the 
best result in this case study. In Figure 2, CFA and FA 
also have similar convergence characteristics for this 
study case. This condition is understandable since both 
CFA and FA share similar movement mechanism. 
Both of them are converged near the second and third 
iteration. On the other hand, APSO converged at 16th 
iteration. Thus, CFA and FA converge better in one 
iteration than APSO. However, we can’t determine 
that APSO is slower due to here we don’t record our 
simulation time. 

5.2 Power losses reduction 

Another objective considered in this paper is reducing 
power losses as low as possible. Our simulation result 
is given in Table 7. All parameters given in Table 7 are 
rounded at seven digits to assist for showing their 
differences. Table 7 shows that each method gives an 
extremely close result once again. In order to clarify 
the difference between these results, we consider more 
digits to analyze in the next paragraph. In addition, 
control variable values are obtained, and they are 
agreed to each other once more. This value may 
confirm the competitiveness of these three methods 
and the flexibility of metaheuristic methods.  

Table 5 Best obtained value for cost minimization case study 

Variables CFA FA APSO 
PG3 (MW) 100 100 100 
PG5 (MW) 80 80 80 
PG7 (MW) 98.2309653 98.2309663 98.2309645 
PG12 (MW) 14.9839479 14.9839465 14.9839482 

Qcap1 (MVAR) 50 50 50 
Generation Cost 448085.7735050 448085.7731841 448085.7737524 

Fitness Value 1086266.3702783 1086266.3702783 1086266.3702783 

Table 6 Statistical analysis result for cost minimization case study 

Algorithm Minimum Average Median Maximum 
CFA 278301 278306 278306 278310 
FA 278301 278306 278306 278309 

APSO 278303 278309 278309 278315 
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Table 7 Best obtained value for loss reduction case study 

Variables CFA FA APSO 
PG3 (MW) 100 100 100 
PG5 (MW) 80 80 80 
PG7 (MW) 94.6814344 94.6814289 94.6814335 
PG12 (MW) 18.4514369 18.4514423 18.4514378 

Qcap1 (MVAR) 50 50 50 
Generation Cost 5.5320096 5.5320095 5.5320096 

Fitness Value 669492.2024843 669492.2024843 669492.202484 

Table 8 represents the statistical analysis to compare 
each method for this case study. All numbers given in 
Table 8 are fourth to the tenth number behind decimal 
point to illustrate their difference more clearly. To 
serve readers for reading Table 8, “append” number 
given there to the right of 669492.202. For instance, 
CFA’s average fitness value given in Table 6 is 
4843199. Hence, CFA’s average fitness value is 
669492.2024843199. In Table 8, CFA gives lower 
values than other used methods. The result indicates 
that CFA performs better than FA and APSO for this 
kind of problem. 

 
Figure 2 Convergence curve for cost minimization 
case study 

Table 8 Statistical analysis result for loss reduction 
case study 

Algorithm Minimum Average Median Maximum 
CFA 4843156 4843199 4843199 4843228 
FA 4843164 4843202 4843202 4843234 

APSO 4843178 4843226 4843225 4843270 

Figure 3 given below, is the convergence curve of the 
best result in this case study. In Figure 3, CFA and FA 
also have similar convergence characteristics for this 
study case once again. This characteristic confirms 
regarding our statement for similarity on movement 
mechanism between CFA and FA. Both of them are 
converged near second iteration.  

On the other hand, APSO converged at 15th iteration. 
It shows that CFA and FA converge better than FA for 
this study case. 

 
Figure 3 Convergence curve for loss reduction case 
study 

6 Conclusion 
We successfully implement CFA to solve OPF 
considering system’s voltage stability. For the sake of 
comparison, we compare this method with the other 
well-known metaheuristic methods. Our result shows 
that CFA may perform better than FA to solve OPF 
problem, while both CFA and FA share similar 
convergence characteristics. In the future, there would 
be more advanced methods developed for solving OPF 
problem and new considerations added that may enrich 
OPF formulation. 
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