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Abstract  

Mobile transportation robots using two wheels have now been investigated. The work within this study is to design 
and simulate two-wheeled robots, thus it can maintain its balance. Many control methods are used to determine 
satisfactory control optimization, therefore a proper response is obtained by sensor recitation corresponding with the 
reaction of a Direct Current (DC) motor. Recently, two-wheeled transportation robot is a Segway model. In this study, 
we apply a Proportional Integral Derivative (PID) controller as a control system in a self-balancing robot with a 
working principle is similar to an inverted pendulum. In the next study, the PID controller and the whole system are 
applied in the microcontroller board. The angular velocity of two DC motors used as a plant can be adjusted by Pulse 
Width Modulation (PWM) through a motor driver. An Inertial Measurement Unit (IMU) sensor is utilized to detect 
the angular acceleration and angular velocity of the self-balancing robot. The phase design is constructed by planning 
the robot dimension, mechanical system, and an electronic system. Particularly, this study performs mathematical 
modeling of the robot system to obtain the transfer function. In addition, we simulate the PID parameter with 
multiplication between the basic parameter and several fixed constants. The simulation results indicate that the robot 
can maintain its balance and remains perpendicularly stable for balancing itself. 
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1 Introduction 
The development of robotics technology has made the 
quality of human life even higher. Nowadays, it has 
been able to improve both the quality and quantity, in 
terms of production, medicine, education, and 
competition [1]. Moreover, it has reached a short 
distance transportation without pollution due to the 
usage of an electricity source, for instance, a two-
wheeled robot has been utilized as a means of 
transportation, namely Segway [2, 3]. It is expected to 
be an alternative solution for people who expect to have 
a practical vehicle that can be used for personal 
transporter [4]. One of them is a self-balancing two-
wheeled robot [5–8]. 
 
Two-wheeled balancing robot is a mobile robot with 
two wheels on the right and left sides and it will not be 
balanced without a controller. A self-balancing robot is 
an application of an inverted pendulum model that is 
placed on a wheeled train with the aim is to keep the 
robot upright without outside control. The balancing 
system in a two-wheeled robot requires a sufficient and 
reliable control method. These are required to maintain 
the position of the robot in a state which perpendicular 

to the surface of the earth without the necessity of other 
controllers from outside [9]. 
 
Previous research discussed the application of Kalman 
filtering and Proportional Integral Derivative (PID) 
control for an inverted pendulum controller. This 
research developed a prototype design of a self-
balancing robot using a Kalman filtering algorithm and 
PID control. The Kalman filtering algorithm was 
employed to reduce or eliminate several error signals 
from the output of the sensor [10]. The PID control 
algorithm was used to regulate the forward, backward, 
rotating, and stabilizing perpendicular movement to the 
flat plane, also to rotate the direction of the robot [11-
15]. 

Other studies presented self-balancing robots with 
comparison of control methods, such as Proportional 
Derivative (PD), Proportional Integral (PI), and PID. 
This study aims to explain the design and building of a 
self-balancing robot with various control methods, thus 
the robot can balance perpendicular to the earth surface 
in a flat plane area. The microcontroller used was AVR 
ATMega 128, and the sensor was MPU-6050 module. 
Controllers were deployed to determine the velocity and 
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direction of Direct Current (DC) motor rotating as a 
plant, based on the tilt angle of the robot body to the 
surface of the flat plane. This self-balancing robot can 
maintain the position corresponding with the earth 
surface in a flat plane [16]. 

The objective of this study is to design and simulate a 
Two-Wheeled Balancing Mobile Robot (TWBMR) 
model with the PID control algorithm as a controller in 
determining the magnitude and direction of rotation for 
the DC motor. A DC motor was as a plant, hence 
TWBMR can maintain its position perpendicular to the 
earth surface in a flat plane. To ensure the design, we 
emphasized the simulation of PID controller with a 
transfer function of the TWBMR model. Then, we tried 
to conduct multiplication between the calculated PID 
parameter with a set of constants. 

According to the above introduction, the organization of 
this paper is as follows. In Section 2, we describe the 
mathematical modeling of the robot system; also, we 
state the parameters of TWBMR. Subsequently, the 
robot modeling system with type 1 and 2 of the Ziegler-
Nichols PID controller is demonstrated in Section 3, 
where discussions are provided as well. Section 4 
presents simulation results with type 1 and 2 of the 
Ziegler-Nichols PID controller. Finally, some remarks 
and conclusions of the study are stated in Section 5.  

2 Mathematical Modeling of Robot System 
The transfer function is obtained through mathematical 
calculations of the self-balancing robot mechanical 
system. The mechanical concept of a TWBMR is the 
same as the inverted pendulum concept. The pendulum 
will be fallen when there is an absence of balancing 
force. Based on the concept, it can be concluded that the 
system is unstable. In contrast, the pendulum position is 
normal or not reversed, thus it is stable. Figure 1 depicts 
the model for an inverted pendulum with 𝜃 is tilt angle, 
𝐹 is force given to the model, 𝑀 denotes model mass, 𝑥 
and 𝑦 are axis of vertical and horizontal, respectively. In 
the implementation, DC motors will provide the 
appropriate velocity, thus the robot remains balance. 
Without the appropriate velocity, the robot will befallen.  
 

 
Figure 1 Inverted pendulum model 

 
Figure 2 Inverted pendulum free body and inertia force 
diagram at the stable equilibrium position 
 

Table 1 Parameters of TWBMR  
Variable Description Value 

𝑀 Mass of the cart 0.3 kg 
𝑚 Mass of pendulum rod 0.2 kg 
𝑏 Viscous friction coefficient 0.1 N/m/sec 
𝑙 One half pendulum rod length 0.15 m 
𝐼 Inertia moment pendulum rod  0.0015 kg.m2 
𝐹 Applied force to the cart kg.m/s2 
𝑔 Gravity m/s2 
𝜃 Pendulum angle rad 

 
The dynamic equation for TWBMR from Newton II law 
is applied. Figure 2 shows the Free Body Diagram 
(FBD) of the mechanism. While the slope of the 
pendulum with several angles to complete the two-
component of forces along with the horizontal and 
vertical directions. Table 1 explains the parameters for 
TWBMR. According to Figure 2, it can be obtained the 
mathematical system modeling equation for self-
balancing robots, as follows [17] 

∑𝑓- = 0 
(1) 

𝐹 − 𝑏𝑥 − 𝑀𝑥 − 𝑚𝑥 − 𝑚𝑙𝜃𝑐𝑜𝑠𝜃 + 𝑚𝑙𝜃5𝑠𝑖𝑛𝜃 = 0 

∑𝑓8 = 0 
(2) 

𝑀𝑔 + 𝑚𝑔 − 𝑚𝑙𝜃𝑠𝑖𝑛𝜃 − 𝑚𝑙𝜃5𝑐𝑜𝑠𝜃 = 0 

∑𝑀9 	= 0 (3) 

𝑚𝑔𝑙	𝑠𝑖𝑛𝜃 + 𝐼𝜃 + 𝑚𝑙5𝜃 + 𝑚𝑙𝑥𝑐𝑜𝑠𝜃 = 0,  

 
Equations (1), (2), and (3) are combined, hence the force 
equation is obtained along the horizontal and vertical 
directions, 
 

𝐼 + 𝑚𝑙5 	𝜃 + 𝑚𝑔𝑙	𝑠𝑖𝑛𝜃 = −𝑚𝑙𝑥𝑐𝑜𝑠𝜃 (4) 

𝑀 +𝑚 𝑥 + 𝑏𝑥 + 𝑚𝑙𝜃𝑐𝑜𝑠𝜃 − 𝑚𝑙𝜃5𝑠𝑖𝑛𝜃 = 𝐹, (5) 

 
Equations (4) and (5) are two linear equations of the 
transfer function, where 𝑞 = 𝜋. With assumption 𝜃 =
𝜋 + 𝜙, 

𝑐𝑜𝑠𝜃 = −1 (6) 

𝐹 

𝜃 

𝑀 

𝑥 
𝑦 
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𝑠𝑖𝑛𝜃 = −𝜙 (7) 

𝑑5

𝑑𝑡5
= 0, (8) 

 
After processing the equations (6), (7), and (8) approach 
to non-linear, then we obtained two variations of motion 
equations. The 𝑈 value represents the input, 
 

By applying Laplace transform on equations (9) and 
(10), 

 
we yielded the transfer function for TWBMR from the 
equations (11) and (12). 

𝛷(𝑠)
𝑈(𝑠)

=

FG
H
	𝑠

𝑠I + J(KLFGM)
H

𝑠5 − (NLF)FOG
H

𝑠 − JFOG
H

	, (13) 

 
where 𝑞 = 𝑀 + 𝑚 𝐼 + 𝑚𝑙5 − 𝑚𝑙 5 .  
 
The parameters in Table 1 are substituted in equation 
(13) by replacing the 𝑞 value in equation (13), we 
obtained the transfer function of TWBMR. 
 
 

𝛷(𝑠)
𝑈(𝑠)

=
14,286𝑠

𝑠I + 0.286𝑠5 − 70𝑠 − 0.0294
	 (14) 

3 PID Controller 
Each deficiency and strengthen of P, I and D controllers 
can cover each other by combining them in parallel into 
the PID controller. The combination of proportional, 
integral and derivative controls in the PID control 
system has a specific purpose. Proportional control 
excels at fast rise time, while integral control can 
eliminate the steady-state error. Moreover, derivative 
control can reduce overshoot. When we combined them, 
we get the result of control with error-eliminating 
properties, reducing in rise time, settling time, and 
overshoot [17]. Table 2 shows the PID controller 
characteristics. 

3.1 Simulation design with type 1 of Ziegler-
Nichols PID controller 

After obtaining the transfer function from the systematic 
modeling of self-balancing robots. Afterward, we 
simulated the function in equation (14) using Simulink 
MATLAB. It is aimed to perform the system response 
from the transfer function of TWBMR. The diagram 
block of the system simulation test using the PID 
Ziegler-Nichols type 1 method is shown in Figure 3, 
which consists of the unit step, transfer function, and 
output. The value of unit step was given 90, which 
means that the response system will be in steady-state at 
a value of 90º. The value of the transfer function block 
was given according to equation (14) due to the response 
system value to be tested for validating the stable 
condition. The output/scope will display the results of 
the response system wave from the tests carried out by 
the PID Ziegler-Nichols type 1 method [17].

 
Table 2 Characteristics of PID parameters 

Parameter Rise Time Overshoot Settling Time Error Steady State 
𝐾X  Decrease Increase Decrease by Variation Decrease 
𝐾Y  Decrease Increase Increase Elimination 
𝐾Z  Decrease by Variation Decrease Decrease Decrease by Variation 

 

 
Figure 3 TWBMR system diagram without PID controller

3.2 Simulation design with type 2 of Ziegler-
Nichols PID controller 

The PID control method is used to improve the system 
response to self-balancing robots. The response system 

obtained without using the PID control system was still 
far from the desired response and even the robot did not 
reach the specified setpoint. The first thing to do is 
utilized PID control method to calculate the values of	

𝐼 + 𝑚𝑙 5	𝛷 − 𝑚𝑔𝑙	𝛷 = 𝑚𝑙𝑥 (9) 

𝑀 +𝑚 𝑥 + 𝑏𝑥 + 𝑚𝑙𝛷 = 𝑈, (10) 

𝐼 + 𝑚𝑙5 𝛷 𝑠 𝑠5 − 𝑚𝑔𝑙	𝛷 𝑠 	= 𝑚𝑙𝑋 𝑠 𝑠5 (11) 

𝑀 +𝑚 𝑋 𝑠 𝑠5 + 𝑏𝑋 𝑠 𝑠 + 𝑚𝑙𝛷 𝑠 𝑠5 = 𝑈 𝑠 , (12) 
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𝐾X, 𝐾Y, and 𝐾Z as parameters of the PID controller. The 
determination of PID parameters is based on the 
reaction of the closed-loop system in the transfer 
function of self-balancing robots.  A 𝐾X variable is 
added first to the system, thus the closed-loop transfer 
function is determined by adding the proportional gain 
(𝐾X) [8], as follows 
 
𝐶 𝑠
𝑅 𝑠

=
14,286𝑠

𝑠I + 0.286𝑠5 − 70𝑠 − 0.0294
 (15) 

𝐶 𝑠
𝑅 𝑠

=
𝐾X 	

^_.5`ab
bcLd.5`abMefdbed.d5g_

1 + 𝐾X
^_.5`ab

bcLd.5`abMefdbed.d5g_

 (16) 

𝐶 𝑠
𝑅 𝑠

=
𝐾X14,286

𝐾X	14.286 + 𝑠 + 8.51 	 𝑠 − 8.22 	(𝑠 + 0.0004)
 (17) 

𝐶 𝑠
𝑅 𝑠

=
𝐾i		(14,286)

𝐾X	14.286 + 𝑠I + 0.286𝑠5 − 70𝑠 − 0.0294
 (18) 

 
The stability of a system can be seen from the location 
of the pole system in the field 𝑠, if the poles of the 
system are located to the left of the field 𝑠, then the 
system is stable. To find out the location of the poles in 
a system, hence we used the stability of routh. The first 
column in routh stability shows the polar location of a 
system, if the variable in the column is positive then it 
can be ascertained that a system has a pole on the left 
side of the field 𝑠. To get 𝐾X value to meet the routh 
stability criteria, it can be determined by referring to the 
transfer function that has been obtained in equation (18), 

𝑠I 	→ 1																	 − 70 

𝑠5 	→ 	0.286								 − 0.0294 + 14.286	𝐾X 

𝑠^ 	→ 	
−20.02 + (0.0294 − 14.286𝐾X)

0.286
 

𝑠d → −0.0294 + 14.286𝐾X. 

Then, 𝑠^ can be analyzed as follows 

−20.02 + (0.0294 − 14.286𝐾X)
0.286

≥ 0 

−70 + 0.103 − 49.95𝐾X 	≥ 0 

−69.897 − 49.95𝐾X 			≥ 0 

𝐾X 	≥ −1.399 (19) 

 
Whereas, for 𝑠d, as follows 

−0.0294 + 14.286	𝐾i 		≥ 0 (20) 

𝐾X ≥ 0.00205, (21) 

 
Therefore, we acquired the range of 𝐾X for TWBMR as 
follows, 
 

−1,399 ≥ 𝐾i ≥ 0,00205 (22) 

 
𝐾mn and 𝑃mn were yielded by substituting 𝑗𝜔 in the 
variable 𝑠 for denominator of equation (18). 
Denominator function over the closed-loop system 
commonly referred to as the equation of system 
characteristics. System characteristic equations with 𝐾X 
parameter on self-balancing robots is as follows, 

𝑠I + 0.286𝑠5 + 70𝑠 − 0.0294 + 14.286𝐾X 		= 0 (23) 

−𝑗𝜔I − 0.286	𝜔5 + 70𝑗𝜔 − 0.0294 + 14.286𝐾X = 	0 (24) 

−0.286𝜔5 − 0.0294 + 14.286𝐾X + 𝑗 −𝜔I + 70𝜔 = 0. (25) 

 
From equation (25), we obtained two parts, namely the 
real and imaginary parts. The imaginary part will be 
used to get the value of ω, while the real part is used to 
get the 𝐾X value, 

−	𝜔I + 70𝜔 = 0 (26) 

𝜔 = 8.366. (27) 

 
According to equation (27), we yielded 𝑃mn 

𝑃mn =
2𝜋
𝜔
=

2𝜋
8.366

= 0.751	𝑠𝑒𝑐𝑜𝑛𝑑, (28) 

 
The 𝐾mn value was obtained by using the real part by 
substituting the value 𝜔. 

−0.286𝜔5 − 0.0294 + 14.286𝐾X = 0 (29) 

𝐾X = 1.3999, (30) 

 
𝐾X = 𝐾mn = 1.3999. With 𝐾mn and 𝑃mn obtained values, 
thus, the value of the Ziegler-Nichols type 2 PID 
parameters for TWBMR is presented in Table 3. 

After the parameters of the 𝐾X, 𝐾Y, and 𝐾Z values are 
obtained, a simulation can be carried out by adding the 
PID controller to the transfer function of the self-
balancing robot, as shown in Figure 4. 
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Table 3 Parameters of the PID Ziegler-Nichols for TWBMR 
Parameter PID Value 

𝐾X  4.0602 
𝑇Y = 𝐾Y 4.4100 
𝑇Z = 𝐾Z 1.1025 

 
 

 
 

Figure 4 TWBMR system diagram with PID controller 

 
4 Result and Discussion 
Based on the diagram block in Figure 3, we presented 
the response from the self-balancing robot transfer 
function which was tested without using a controller by 
performing a system simulation on Simulink MATLAB. 
From the simulation results, the system response graph 
was obtained as shown in Figure 5.  

 
Figure 5   Response for TWBMR system without PID 
controller  

Figure 5 shows the response system generated from the 
self-balancing robot simulation when using the PID 
Zigler-Nichols type 1 method. Besides, it shows a 
response system, despite it does not form the s curve due 
to the usage of an opened-loop system. Even, if the 
system directly implemented to the TWBMR, thus it 
will fall concerning its balanced condition. Therefore, to 
improve the response system for self-balancing robot, it 
is necessary to add a control system. The control system 
or controller that will be added to the self-balancing 
robot system is the PID controller. 

4.1 PID system simulation with the type 2 
Ziegler-Nichols method 

Based on the diagram block in Figure 4 to see the 
response of the transfer function for TWBMR, and using 
parameters in Table 3, the response generated with the 
PID control can be seen in Figure 6. 

 
Figure 6 Response system for TWBMR system diagram with 
PID controller  

From Figure 6, the response system is obtained which at 
the beginning of the robot will be stable in a few 
seconds. When at 52 seconds the robot starts oscillating 
left and right. In this state, the robot will try to balance 
its position by looking for the set point value that has 
been determined, namely 1. Testing the PID simulation 
with 𝐾X, 𝐾Y, and 𝐾Z values by calculating Ziegler-
Nichols type 2 calculation can balance the robot, 
however only just a moment and over time the robot will 
fall due to its failure to maintain the balance.  
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After testing the PID Ziegler-Nichols type 2, the result 
was not as expected. Therefore, the next test was 
conducted by adding two times for each value of 𝐾X, 𝐾Y, 
and 𝐾Z. This addition was done to improve the response 
of the system to suit what desired was and refer to the 
following characteristics in Table 2. Figure 7 shows the 
result of the simulation for the PID test with the addition 
of two multiplied by the parameters in Table 3. 

Figure 7 shows that the overshoot value is still fairly 
high, and the rise time is moderately fast, but for the 
value of settling time is still quite long which is about 8 
seconds. These conditions are caused by the function of 
each used controller, such as the function of the P 
controller is to speed up the rise time, but it can increase 
overshoot. The function of the controller I can reduce 
errors and speed up rise time, but it can increase settling 
time and overshoot.  

While the function of the D controller is to provide an 
overshoot damping effect and reduce settling time. 
Besides, in Figure 8 when we simulated the system with 
𝐾i times 2 and maintain the values of 𝐾Y and 𝐾Z, as in 
Table 3. As can be seen, the overshoot value is 
incredibly high, but the rise time is pretty fast and the 
settling time is fairly fast from the previous test. 

 
Figure 7 TWBMR system without PID controller with 
Parameters of the PID Ziegler-Nichols using doubled 
parameter values  

 
Figure 8 Response system for TWBMR system diagram with 
PID controller using doubled 𝐾X value 

Additionally, in Figure 9, the overshoot value is 
extremely high and the settling time is quite long 
comparing the test in Figure 7, but the rise time is quite 
fast. 

 
Figure 9 Response system for TWBMR system diagram 
with PID controller using doubled 𝐾X and 𝐾Y values 

We multiplied 2 to the value of 𝐾X and 𝐾Z. The values 
of settling time and rise time are relatively extended, but 
the overshoot value is quite fast if we compare with 
Figure 8. 

 
Figure 10 Response system for TWBMR system diagram 
with PID controller using doubled 𝐾X and 𝐾Z values 

Not only conducted multiplication with 2 for all 
parameters in Table 3 but also, we tried to simulate with 
multiplication with 10 for the values of 𝐾X, 𝐾Y, and 𝐾Z, 
as shown in Figure 10. The overshoot value is fairly 
small from the two previous tests and the rise time value 
is obtained, as well as the value of settling time is similar 
as in Figure 7. Also, we simulated 𝐾X, 𝐾Y, and 𝐾Z times 
15, as shown in Figure 11. The overshoot value is 
relatively small and the rise time value is obtained with 
the value of settling time is faster. 
 
Furthermore, we conducted multiplication between 20 
and 𝐾X, 𝐾Y, and 𝐾Zvalues, as shown in Figure 13. The 
overshoot value is small and the rise time value is 
obtained. In addition, the settling time is faster. These 
results almost similar to the result in Figure 12. 
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Figure 11 Response system for TWBMR system diagram 
with a PID controller using parameters value multiplied by 10 

 
Figure 12 Response system for TWBMR system diagram 
with a PID controller using parameters value multiplied by 15 

 
Figure 13   Response system for TWBMR system diagram 
with a PID controller using parameters value multiplied by 20 

 
Figure 14 Response system for TWBMR system diagram 
with a PID controller using parameters value multiplied by 25 
 

To verify the system with the expected result, therefore 
the last testing was multiplying 25 for the 𝐾X, 𝐾Y, and 
𝐾Z values, as shown in Figure 14. The overshoot value 
is moderately small and even approaches 90º or setpoint 
and the rise time value is obtained, as well as the settling 
time value is faster than all the tests that have been done. 

Table 4 shows the simulating response systems for the 
whole parameters of PID. By looking at the response of 
the system when the values of 𝐾X, 𝐾Y, and 𝐾Z are 
multiplied by 25, we can verify that the TWBMR 
simulation is suitable for implementation with 
appropriate PID controller parameters.  

The maximum overshoot value smaller than the 
previous tests even close to the specified setpoint value. 
The rise time is quite fast from previous tests and the 
value of steady-state error and settling time are quite 
small compared to all tests that have been done. These 
are because the function of each controller used, such as 
the function of controller P speeds up the rise time, but 
it can add overshoot.  
 
The function of the controller I can reduce error and 
speed up rise time, but it can increase settling time and 
overshoot. The function of controller D is to provide an 
overshoot and reduce settling time. Hence, the best PID 
simulation value is at the 𝐾X, 𝐾Y, and 𝐾Z values are 
multiplied by 25. 

Table 4 Response systems for testing simulation 
 

PID Controller Maximum Overshoot (%) Rise Time (s) Error Steady State (%) Settling Time (s) 
2 times 𝐾X, 𝐾Y, and 𝐾Z 92.6 0.316 0 8.879 

2 times 𝐾X 117.2 0.201 0 5.259 
2 times 𝐾X and 𝐾Y 111.5 0.259 0 5.482 
2 times 𝐾X and 𝐾Z 99.2 0.316 0 8.764 

10 times 𝐾X, 𝐾Y, and 𝐾Z 24.7 0.431 0 4.741 
15 times 𝐾X, 𝐾Y, and 𝐾Z 20.6 0.489 0 4.224 
20 times 𝐾X, 𝐾Y, and 𝐾Z 19.6 0.431 0 3.882 
25 times 𝐾X, 𝐾Y, and 𝐾Z 18.6 0.374 0 3.649 
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5 Conclusion 
The design value of the PID controller has been obtained 
by validating the transfer function first and then 
simulated it using Simulink MATLAB simulation 
software. The results obtained by Simulink MATLAB 
simulation with the best system simulation test value for 
balancing robots are when the values of 𝐾X, 𝐾Y, and 𝐾Z 
are multiplied by 25 for each value. These results ensure 
that TWBMR possible to implement to be a means of 
transportation or personal transporter. 
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