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Abstract 

Some challenges in the development of autonomous vehicles, such as generating a model representing the dynamics 
of the speed, designing a longitudinal controller, and the optimization method, are still explored until now. In this 
paper, a longitudinal controller based on the proportional-integral-derivative controller with an additional feed-
forward term is proposed, where the Flower Pollination Algorithm is employed for optimizing the controller. The 
feed-forward term and the model used in the optimization are generated using the data-driven approach. For the 
optimization, a cost function considering mean absolute error and mean absolute jerk will be minimized. The 
simulation study was performed using the CARLA simulator, and the results show that the proposed scheme 
represents the dynamics of the speed very well inside the range of the training data and does not overfit the training 
data. It is also demonstrated that the proposed longitudinal controller can track the desired speed satisfactorily in a 
non-straight path. 
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1 Introduction 
Until now, researches and developments of the 
autonomous vehicle still grow quite rapidly. One of the 
important aspects in the development of an autonomous 
vehicle is in the design of control systems. For 
autonomous vehicles, the control mechanism can be 
divided into two systems separately, i.e., longitudinal 
and lateral control. Longitudinal control is required for 
controlling the speed of the vehicle, whereas lateral 
control drives the vehicle to follow a path. The 
longitudinal control is not a simple problem because of 
the nonlinearity occurs in the dynamics, such as the drag 
force acting on the vehicle. One of the most popular 
controllers applied in longitudinal control is the 
proportional-integral-derivative (PID) type of controller 
and its variation [1–3]. PID controller is widely used 
because of inexpensive computation and its simplicity. 
Many works in the literature, e.g. [4], clearly explain 
how to tune the parameter of the PID controller, the 
variations of the PID controller, and issues regarding 
practical implementation. The response of the 
controlled variable can be adjusted by changing the PID 
parameters. Mostly, because of the integral component, 
the PID controller will give zero steady-state error if the 
set-point is a step function. To obtain a satisfactory 
tracking performance, an additional term should be 

added in order to compromise the changing set-point. 
For this reason, a new longitudinal controller form will 
be proposed in this investigation 

One of the very challenging aspects of the design of a 
longitudinal controller is the tuning of the parameters. 
Manually tuning the parameters will lead to a non-
optimal solution. To gain satisfying results, 
optimization procedures must be performed. Among 
many available techniques, one of the most promising 
optimization techniques to solve this kind of problem is 
the nature-inspired optimization technique, such in [5–
8]. A nature-inspired optimization technique tries to 
mimic a natural phenomenon, mostly from an animal or 
a plant. In general, this technique performs well if it 
optimizes linear or non-linear, unconstrained or 
constrained, problems due to no need for the gradient. 
Currently, there are a number of nature-inspired 
optimization techniques that exist in the literature; the 
most popular one is Particle Swarm Optimization (PSO) 
[9]. However, some other techniques are more efficient 
than PSO, e.g., flower pollination algorithm (FPA). 
FPA works well to solve various optimization problems 
[10]. For that reason, FPA will be explored in this 
investigation for solving the optimization problems. 
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To optimize the longitudinal control system, a model 
that represents the vehicle longitudinal dynamics is 
needed. In theory, the vehicle longitudinal dynamics 
can be represented as a non-linear model. The 
nonlinearities at the model are generated by physical 
phenomena, e.g., drag forces, gravitational forces, 
longitudinal tire forces, and rolling resistance [11]. The 
model generated by the laws of physics is usually very 
complex, e.g. [12], and needs an extensive calibration. 
As a result, on some occasions, the modeling process is 
time-consuming, and in addition, the model also has a 
high computational cost due to its complexity. To 
address that problem, a new two-dimensional vehicle 
forward longitudinal model based-on the data-driven 
approach is introduced in this work. By using the data-
driven approach, the model can estimate the training 
data quite well with low-cost calibration. However, the 
data-driven approach has some limitations. One of the 
limitations is the operating speed, which should be in 
the range of the simulation value. 

To verify the proposed longitudinal control method for 
the autonomous vehicle, a simulation study will be 
conducted using CARLA Simulator [13]. This software 
gives a realistic environment for self-driving car 
research. The track and set-point used for simulation are 
obtained from the Introduction to Self-Driving Cars 
course provided by Coursera, with permission from the 
author of the course. For the optimization, the code is 
written using Python language in the Jupyter Notebook 
environment. 

2 Flower Pollination Algorithm 
Flower Pollination Algorithm (FPA) is an optimization 
method that mimics the flower pollination process in the 
real world with some simplifications. FPA is introduced 
in 2012 by Yang [10]. The global convergence of FPA 
has been proven in [14] by using Markov Chain. In this 
algorithm, a set of parameters is described as x"# ∈ ℝ

& 
where x"# is the 𝑖-th flower at iteration 𝑘 and 𝑁 is the 
number of parameters. 

FPA consists of two different update equations, i.e. 
global pollination and local pollination. The use of 
global and local pollination is switched concerning 
switching probability 𝑝. In global pollination, the 
parameters of a flower x"# will be updated based on its 
value and the best solutions g ∈ ℝ& so far. The global 
pollination is given as follows 

𝒙-./0 = 𝒙-. + 𝛾𝑳5𝒈− 𝒙-.8 (1) 

where L ∈ ℝ& is a Levy-flights-based step size. A 
random number 𝑠 which follows the Levy distribution 

can be determined by an algorithm proposed in [15]. 
That random number can be determined using the 
following expression 

𝑠 = 𝑋/|𝑌|? (2) 

where α is a constant, 𝑋 is a zero-mean Gaussian 
distribution with variance σB and 𝑌 is a zero-mean 
Gaussian distribution with variance 1. The variance σB 
is calculated using formula 

σB = C
Γ(1 + α)

αΓ(0.5 + α/2)
sin(πα/2)
2?/BPQ.R

S
0/?

 (3) 

where Γ is the Gamma function. In this work, the step 
size is limited to a positive value sQ so that s ≥ sQ > 0 
for faster convergence. In local pollination, the 
parameters x"# will be updated based on the parameters 
of other flowers. The update equation can be written as 

𝑥-./0 = 𝑥-. + ϵ5𝑥X. − 𝑥Y.8 (4) 

where ϵ is a random number at interval [0,1] and i ≠
j ≠ l. 

Both (1) and (4) is not directly updated to the flowers or 
population. If the result of those equations gives a 
smaller cost or loss than the previous one, the new 
parameters will be updated to the population. This 
process is repeated for a pre-determined maximum 
number of iterations. 

3 Longitudinal Controller 
The proposed longitudinal controller consists of a feed-
forward and feedback term. The feedback controller is 
the PID type controller, consisting three parts, namely: 
proportional, integral, and derivative. This controller 
works by considering the difference between the set-
point and the controlled variable. On the other hand, the 
feed-forward controller is employed to improve the 
tracking performance. The feed-forward term which is 
used in the simulation is the throttle value at the steady-
state condition given the set-point 𝑟. The feed-forward 
term is designed based on the simulation data. 

In practice, the control signal is usually bounded by 
some constants because of actuator saturation. This 
phenomenon can generate undesirable overshoot. The 
integral part accumulates the error even though the 
control signal is not increasing or decreasing anymore. 
Hence, overshoot is needed to decrease the integral 
value. The simplest solution to tackle this problem is 
clamping the integral term by some constants. With 
clamping, the integral term stops accumulating value of 
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the signal when not being needed. In the proposed 
scheme, the integral term is clamped based on the 
difference between the saturated value of the actuator 
and the feed-forward term. 

In discrete-time, the proposed longitudinal controller 
can be written as follows: 

𝑒. = 𝑟. − 𝑣. (5) 

𝐸Y = sat f5𝑀Y − 𝑠h,.8/𝑘-, −∞,  0j (6) 

𝐸k = sat f5𝑀k − 𝑠h,.8/𝑘-,  0,  ∞j (7) 

𝐸. = sat lm𝑒.Δ𝑇
.

-p0

, 𝐸Y, 𝐸kq (8) 

𝑢. = 𝑠h,. + 𝑘s𝑒. + 𝑘-𝐸. + 𝑘t(𝑒. − 𝑒.P0)/Δ𝑇 (9) 

where (⋅)# is a variable at timestep 𝑘, 𝑣 is the speed of 
a vehicle, 𝑒 is the difference between the set-point and 
actual speed, 𝑢 is the control signal, sat(⋅, 𝑏, 𝑐) is the 
saturated function with lower bound 𝑏 and upper bound 
𝑐, Δ𝑇 is the sampling time, 𝑀x is the minimum value of 
the throttle, 𝑀y is the maximum value of the throttle, sz 
is the throttle value given set-point at steady-state 
condition, 𝑘{ is the proportional gain, 𝑘" is the integral 
gain, and 𝑘| is the derivative gain. 

The optimum values of 𝑘{, 𝑘", and 𝑘| are determined 
by minimizing 

min	 𝐽5𝑘s, 𝑘-, 𝑘t8 =
1
𝑀
m(|𝑒.| + λ0𝑣̈.B)
�

.p0

subject to	

𝑘s ≥ 0,
𝑘- ≥ 0,
𝑘t ≥ 0,
𝑀s ≤ λB.

 (10) 

where 𝐽 is the cost function, 𝑀 is the number of 
simulation step, λ(⋅) is a constant, v̈ is the second 
derivative of the speed or jerk, and M{ is the maximum 
of percentage overshoot. The cost function in (10) 
consists of two parts, i.e. mean absolute error (MAE) 
and mean absolute jerk (MAJ). By injecting the absolute 
error to the cost function, the error will be minimized so 
that the vehicle can track the desired speed very well. 
The jerk relates to passenger comfort. A large jerk can 
cause the speed of the vehicle to change suddenly. This 
occurrence can make the passenger feel uncomfortable. 

The reference trajectory used in the optimization of the 
controller is given in Figure 1. The reference 

acceleration is continuous so that the reference speed is 
relatively smooth. 

 

Figure 1 The trajectory which is used in the 
optimization of the longitudinal control 

4 The Proposed Vehicle Longitudinal 
Model 

4.1 Steady-state response 

The steady-state relation between speed and throttle 
resulted from the CARLA simulator is shown in Figure 
2. In this simulator, the throttle and brake lie in the 
interval [0,1]. The proposed relation between speed and 
throttle at steady-state condition is given as follows 

𝑠h = β051 − 𝑒����/����
�.�8 (11) 

where v� is steady-state speed, β0 is a positive constant, 
βB is a negative constant, and β� is a negative constant. 
With (11), the sz has saturated value β0. Therefore, sz 
will not blow up when v� keeps increasing. 

 

Figure 2 Steady-state response between throttle and 
speed in CARLA Simulator 
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4.2 Dynamic model 

A dynamic model based on a data-driven system can be 
obtained using several techniques. Recently, the most 
popular data-driven method for representing dynamics 
is neural networks and its variants, e.g. [16] and [17]. 
Neural networks can construct a complex non-linear 
model consisting of simple non-linear functions, e.g. 
relu function, tanh function, and sigmoid function. The 
neural network algorithm requires significant number of 
data to obtain a good model. Otherwise, the resulting 
neural network model will be overfitting, e.g. [18]. 

Further, the speed dynamics is constructed from several 
functions so that the system is non-linear. The proposed 
model is written as follows 

𝑣̇ = 𝑎0 + 𝑎B𝑣 + 𝑎�𝑣B 
+𝑏0𝑢00 + 𝑏Bexp(𝑏�𝑣 + 𝑏�𝑢0B)𝑢0� 
+𝑐0𝑢B0 + 𝑐Bexp(𝑐�𝑣 + 𝑐�𝑢BB)𝑢B�

 (12) 

where v̇ is the acceleration of the vehicle, u0{ is the 
throttle with time delay d0{, uB{ is the brake with time 
delay dB{, and 𝑎0, 𝑎B, 𝑎�, 𝑏0, 𝑏B, 𝑏�, 𝑏�, 𝑐0, 𝑐B, 𝑐�, 𝑐� are 
constants. This model is proposed to represent the two-
dimensional forward longitudinal dynamics. Some 
functions in (12) are inspired by the law of physics, e.g. 
drag forces and friction. The constraints and 
assumptions are given as follows: 

• The friction resists the vehicle movement, i.e. 
a0, aB < 0. 

• The friction is zero when the vehicle is not 
moving, i.e. the term a0 is reset to be zero if 𝑣 
is zero. 

• The drag force resists the vehicle movement, 
i.e. a� < 0. 

• The throttle drives the vehicle, i.e. b0, bB > 0. 
• The brake resists the vehicle movement, i.e. 

c0, cB < 0. 
• The time delay must not be negative, i.e. 

d00, d0B, d0�, dB0, dBB, dB� ≥ 0. 

The training data consist of 12 time-series data as shown 
in Figure 3. The data are sampled at 100 Hz from 
CARLA simulator. 

 

Figure 3 Training data of the vehicle longitudinal 
system identification 

5 Simulation and Results 

5.1 Optimization of longitudinal model 

The proposed steady-state relation between the speed 
and throttle is optimized using FPA by minimizing 
mean squared error (MSE). There are three parameters 
that must be tuned in (11), i.e. β0, βB, and β�. The 
optimization is done by using 50 flowers, 10000 
iterations and FPA hyperparameters as follows: 𝑝 =
0.8, α = 1.5, γ = 0.1, σB = 0.697, sQ = 0.1. This 
training process takes 6 seconds using i5-6200U 
running at 2.69 GHz. The minimum MSE is 7.19 ×
10PR with β0 = 0.96, βB = −0.13, β� = −0.15. The 
visualization of the result is given in Figure 4. From 
Figure 4, it can be seen that the proposed steady-state 
relation between speed and throttle (11) can fit the 
simulation data very well. 

 
Figure 4 Steady-state response estimation 
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The proposed model (12) is optimized using FPA by 
minimizing MSE. Also, the metric used to evaluate the 
model is an accuracy metric. The accuracy metric is 
given as follows 

𝑎𝑐𝑐 = 100 ¢1 −
£|𝑣 − 𝑣¤|£
£|𝑣 − 𝑣̅|£

¦% (13) 

where 𝑣 is the real speed, v̈ is the mean of the real speed 
and v¤ is the estimated speed from the model. There are 
17 parameters that must be tuned. The FPA 
hyperparameters used in this optimization is the same 
as the previous FPA hyperparameters. This training 
process takes 959 seconds. The minimum MSE is 
9.34 × 10P� with 98.01% accuracy for all training data. 
The resulting parameters are: a0 = −0.93, aB = −0.88, 
a� = −3.81 × 10Pª, b0 = 2.33, bB = 5.2, b� =
5.57 × 10PB, b� = 0.21, c0 = −0.56, cB = −13.84, 
c� = −0.2, c� = −0.67, d00 = 0, d0B = 1.36, d0� =
0.3, dB0 = 0.89, dBB = 0.42, and dB� = 0. The 
accuracy, MSE, and maximum absolute error (MAAE) 
for each training data are shown in Table 1. 

Table 1 Accuracy, MSE, and MAAE of each training 
data 

Index 
of Data 

Accuracy 
(%) 

MSE 
(m2/s2) 

MAAE 
(m/s) 

1 92.77 0.00591 0.283 
2 98.16 0.00408 0.372 
3 98.41 0.00274 0.357 
4 97.08 0.01719 0.692 
5 97.99 0.00907 0.480 
6 96.77 0.00772 0.180 
7 97.88 0.01182 0.364 
8 98.46 0.00751 0.302 
9 81.15 0.03639 0.698 
10 98.11 0.00125 0.279 
11 95.16 0.00780 0.343 
12 95.88 0.00677 0.220 

 

 
Figure 5 Simulation of proposed forward vehicle 
longitudinal model using the first test data 

Test data are used to validate the model. The test data 
are not included in the training data. The estimation 

result using the first test data is demonstrated in Figure 
5 with MSE = 9.15 × 10P�, 96.88% accuracy, and 
MAAE = 0.527 m/s. The estimation result using the 
second test data is shown in Figure 6 with MSE = 
7.49 × 10PB, 93.8% accuracy, and MAAE = 0.826 
m/s. From the test data, it can be concluded that the 
model does not overfit the training data and can 
generalize well. However, the proposed model gives a 
significant error when the speed is greater than 15. This 
undesirable error is caused by the range of speed in the 
training data. 

 
Figure 6 Simulation of proposed forward vehicle 
longitudinal model using the second test data 

5.2 Optimization of longitudinal controller 

The proposed longitudinal controller (9) is optimized 
using FPA by minimizing the cost function (10). The 
maximum value of throttle and brake is 1 while the 
minimum value is 0. There are three parameters that 
must be tuned. The set-point used in this optimization is 
given in Figure 1. The choice of the value of λ0 is 
investigated in the optimization. The maximum 
overshoot must be less than 15%, i.e. λB = 15%. The 
sampling rate is 100 Hz. The simulation results are 
given in Table 2. 

Table 2 The optimization results of the longitudinal 
controller 

𝛌𝟏 𝒌𝒑 𝒌𝒊 𝒌𝒅 
MAE 
(m/s) 

MAJ 
(m/s3) 

𝑴𝒑 
(%) 

0 0.565 010⋅2.25 7.82⋅10-2 0.010 0.244 6.3 
2 0.352 1.14⋅10-2 3.91⋅10-2 0.055 0.148 1.1 
1 0.416 4.49⋅10-1 5.15⋅10-2 0.025 0.175 14.8 

0.5 0.467 8.63⋅10-1 5.65⋅10-2 0.016 0.188 12.2 
0.1 0.527 1.62⋅100 7.31⋅10-2 0.011 0.207 8.7 
 

From the observation during simulation, the actual 
speed and the control signal can be made smoother 
when the MAJ is minimized as shown in Figure 7. 
However, if the value of λ0 is too big, the tracking 
performance will be bad. The λ0 should be tuned to 
obtain a satisfying result according to the designer. For 
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comparison, the control signal and the error histogram 
of the first and the third attempt is given in Figure 7. 

5.3 Simulation of longitudinal control 

The designed longitudinal controller is tested using a 
CARLA simulator. The sampling rate is 100 Hz. The 
reference speed, acceleration, and position are given in 
Figure 8. The simulation results are given in Table 3. 

 
(a) 

 
(b) 

Figure 7 The comparison of the (a) control signal 
(the brake is always zero) and (b) the error histogram 
between the first attempt and the third attempt 

 

 
(a) 

 
(b) 

Figure 8 The (a) reference speed and acceleration, 
and (b) the reference path that used in the simulation 
of the longitudinal control using CARLA Simulator  

Table 3 The simulation results of the designed 
longitudinal controller using CARLA simulator 

𝛌𝟏 MAE 
(m/s) 

MAJ 
(m/s3) 

0 0.097 1.805 
2 0.162 0.874 
1 0.087 1.004 

0.5 0.088 1.213 
0.1 0.091 1.470 

 

 
(a) 

 
(b) 
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(c) 

Figure 9 The (a) profile of normalized speed error, 
(b) the histogram of speed error, and (c) the control 
signal profile (the brake is always zero) from CARLA 
Simulator 

The minimum MAE is given when λ0 = 1. The 
simulation result for λ0 = 1 is given in Figure 9. 
Overall, the results show that the designed longitudinal 
controller can track the desired speed satisfactorily even 
though the track is not a straight line. Besides, this good 
performance indicates that the model used in the 
optimization step describes the speed dynamics quite 
well. However, the minimum MAE does not occur 
when λ0 is equal to zero. It indicates that by injecting 
the MAJ term in the cost function, the overfitting to the 
given trajectory can be reduced. 

6 Conclusions and Future Work 
This paper delivers a proposed model of steady-state 
speed response, a model of speed dynamics, and a 
longitudinal controller of an autonomous vehicle based 
on a data-driven approach. The FPA is used in the 
optimizations of the proposed model and the proposed 
longitudinal controller. The steady-state response 
model and the dynamics model are constructed from 
some linear and non-linear functions. The simulation 
results demonstrate that the model can describe the 
speed dynamics very well. The model does not overfit 
the training data, although the optimization utilizes 
relatively few data. However, the model generates an 
undesirable error when the speed is outside the range of 
the training data. The performance of the model can be 
improved by collecting more data with a broader range 
of speed and sloping road. 

It has also been demonstrated that the proposed 
longitudinal control scheme can track the reference 
speed quite satisfactorily. Besides, taking into account 
the MAJ in the cost function can be used to prevent the 
controller to overfit the given trajectory. Future works 
would consider additional assumptions and simulations 

to improve the robustness of the controller, e.g. 
simulating the controller tuning in 3D space, 
cooperating the slope of the road to calculate the feed-
forward controller, and generating some disturbances.  
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