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Abstract  

The battery system in electric vehicles needs proper monitoring and control to ensure reliable, efficient, and safe 
operation. Recent advancement in cyber-physical technology has brought the emerging digital twin concept. This 
concept opens a new possibility of real-time condition monitoring and fault diagnosis of the battery system. Although 
it sounds promising, the concept implementation still faces many challenges. One of the challenges is the availability 
of a platform to develop digital twins, which involves data pipelines and modeling tools. The data pipeline will 
include the acquisition, storing, and extract-transform-load (ETL) with high velocity, volume, value, variety, and 
veracity data, known as big data. The modeling tools must provide applications to build the high-fidelity model, one 
of the required elements of the digital twin. Based on those urgencies, this paper proposes a platform that facilitates 
a digital twinning of the battery system in an electric vehicle. The platform is built on the open-source framework 
CDAP, equipped with a data pipeline and modeling tools. It has run several performance tests with different 
computation resource configurations and workloads. Doubling the processing power can reduce 12% of computation 
time while increasing memory size by four times only reduces 10% of computation time. The result shows that the 
processing power affects the performance digital twin platform more than the memory size. 
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1 Introduction 
Electric vehicle (EV) demand has been increasing over 
the years as EVs present contribute significant benefits 
from an environmental perspective [1]–[3]. One critical 
component of an EV is a battery system, which supplies 
energy for EV operation. The battery system needs 
proper monitoring and control to perform safe, reliable, 
and efficient functions [4], [5]. The onboard battery 
management system (BMS) is usually responsible for 
those roles [1], [4], [6]. Challenges will appear as the 
number of cells within the system increases [7]–[9]. 
Precisely monitoring and estimating the battery system 
state of such a large number of cells will require huge 
storage space and intensive computation power.  

The emergence of a new concept called digital twins 
became a solution for those challenges. A digital twin is 
a digital counterpart of a physical entity (an object or a 
process) in the digital domain [10], [11]. A physical 
entity is represented in the digital world by high-fidelity 
models that mimic the state of the physical entity [10]–
[12]. Apart from a digital model that only snapshots of 
the physical object at a time, a digital twin presents real-
time states of a physical object. This concept also allows 

the physical object to modify its real-time behavior 
concurrently based on feedback generated by its digital 
twin counterpart [1]. It opens a new way to utilize the 
Internet of Things (IoT), big data, and artificial 
intelligence (AI) technologies to revolutionize EV BMS 
technologies [4], [13].  

The battery system digital twin can be helpful in 
monitoring and making the appropriate control decision 
[4], [14]. The digital part within the digital twin handles 
data storage and computations, while onboard battery 
management handles control actions [15], [16]. 
Developing a digital twin requires five dimensions: 
physical, virtual, connection, data, and service, to be 
present [17]. From those dimensions, data plays a 
significant role in representing physical entities. Data of 
the physical entities gathered from the sensor could be 
entering a big-data territory [18]. Furthermore, the data 
need to process to produce knowledge about the state of 
the physical entities. It demands an analytical platform 
to develop models. Hence, a digital twin platform with 
a data pipeline and modeling tools is required. 
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Although much research has been dedicated to battery 
system digital twins [1], [4], [19], [20], only a few 
explain the data pipeline. This paper aims to provide a 
deeper analysis of the data pipeline and build a 
platform. The platform will enable the digital twinning 
of the electric vehicle battery system. In the next 
section, Section II, we explain the architecture of the 
digital twin platform and the method for testing the 
platform. Section III discusses the test result and 
concludes our findings in Section IV. 

2 Methodology 

2.1 Digital Twin Platform 

The digital twin platform becomes the necessary 
infrastructure to develop a digital twin. It provides the 
pipeline to manage gathered data and modeling tools to 
generate a high-fidelity model. In this paper, the 
platform is built on an open-source CDAP framework 
shown in Figure 1. The platform components are virtual 
machines that run on a server. Table 1 gives detailed 
specifications of the server and each virtual 
machine/instance in Figure 1.  
 

 
Figure 1 Digital twin data flow 

The physical device of the Data Source in the field can 
be an industrial personal computer (PC) or an embedded 
system. The Data Source task is to gather all the data 
from the sensors in the vicinity. It stores the operation 
data of the battery system in the form of SQL and 
continuously sends recent data to the Data Lake. As the 
name suggests, the Data Lake pools the acquired data 
and stores it in the form of a parquet. We chose this data 
format because data stored in parquet occupy less space 
[21] and execute queries faster than the standard row 
format data [22].  

Table 1 Digital twin resources configuration 

Config. Server Data Lake Data 
Warehouse 

Data 
Visualization 

LAN IP 192.168.1.86 192.168.1.45 192.168.1.44 192.168.46 

CPU 
24CPU 
Intel® 
Xeon® 

@1.8GHz 
8vCPU 4vCPU 2vCPU 

Cores 24 8 4 4 
Memory 128GB 64GB 8GB 16GB 
Storage 1TB 120GB 120GB 120GB 

 
The Data Lake will also be responsible for creating a 
battery model to estimate the State of Charge (SoC). 
The battery model is a deep neural network (DNN) 
based on [23]. Data gathered in the Data Lake will be 
utilized for training the DNN model. After that, the Data 

Lake will send the estimation result to Data Warehouse. 
The last stage is Data Visualization. This virtual 
machine act as a human-machine interface to give the 
user information about the updated battery SoC. The 
Data visualization will display the battery SoC by 
Application Programming Interface (API) provided by 
the Data Warehouse. 

2.2 Platform Functional and Performance Test 
To ensure the function and performance of the platform, 
it needs to go through several tests. The tests refer to 
The Performance Measurement Framework for Cloud 
Computing (PMFCC) and ISO 25010 [24]. It divides 
into two parts. First, services delivery that includes (1) 
the platform can deliver the intended tasks and (2) the 
presence of null values and duplicates in the Data 
Warehouse. Data stored in the Data Warehouse should 
not contain null values and duplicates because this data 
will send to users via Data Visualization. Second, the 
performance efficiency test will include (1) 
computation resource utilization and (2) execution time. 
The latter will show the relationship between execution 
time and computation resources. It may reveal the factor 
that affects the platform performance and potential 
bottleneck. 

For the first test, the platform should estimate the SoC 
of a battery system. Data preparation and estimation 
programs are built based on Python programming 
languages. It begins with the Data Lake taking the 
battery operation data. Battery data in parquet transform 
to data-frame with Pandas module in Python. Those 
data are processed before it feeds to the DNN battery 
model. The DNN will estimate the SoC of the battery, 
transform data to SQL format and send the result to Data 
Warehouse. In the second test, we varied both data size 
and resource configurations. The platform task is to 
estimate the SoC of different operation data sizes. We 
also configure the Data Lake resources (CPU cores and 
RAM size) with different combinations.  

3 Manufacturing Process 

3.1 Functional Test 
In functional tests, the platform successfully carried out 
the task of estimating the battery SoC. Data can flow 
throughout the data pipeline from the Data Lake to the 
Data Warehouse. Results show null values and 
duplicates were not present in the Data Warehouse 
because the Data Lake already cleaned null values of 
battery operation data from the Data Source before 
being further used. A Unique ID is also assigned for 
each battery operation data to avoid duplication shown 
in Figure 2. 
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Figure 2 Data warehouse database 

3.2 Performance Test 
For performance tests, we set the Data Lake in two 
configurations, specified in Table 2. The Data Lake was 
deployed to estimate SoC with different data sizes in 
parquet format, ranging from a thousand rows up to a 
million rows, each containing 11 columns, as shown in 
Table 3. Figure 3 depicts the relation between the 
execution time and data size for this test. Configuration 
2 can execute the task faster than Configuration 1 for 
small data sizes. However, the opposite things happened 
for data sizes above 477 KB. Trendlines in Figure 3 
suggest that the execution time increases linearly with 
data size. Correlation is strong, with an R-square of 
0.99. 

Table 2 Data Lake configuration 

Configuration vCPU 
(core) 

RAM 
(GB) 

Configuration 1 8 64 
Configuration 2 4 16 

Table 3 Data test 

Data Number of Row Data Size (KB) 
1 1,000 6.20 
2 10,000 47.9 
3 100,000 477 
4 500,000 2,400 
5 1,000,000 4,900 

 

During tests, we also measure the utilization of CPU 
and RAM. Figure 4 and Figure 5 show the utilization of 
CPU and RAM for Data Lake Configuration 1 and 
Configuration 2. RAM usage for Configuration 2 is 
nearly maximum at a data size of 4.900 KB (Figure 4). 
It causes Configuration 2 to need more time than 
Configuration 1 (Figure 2). RAM is the cause of the 
bottleneck for Configuration 2 while still having enough 
CPU for computation.  

 
Figure 3 Relation between execution time and data size 

 
Figure 4 Computation resources utilization for 
configuration 1 

 
Figure 5 Computation resources utilization for 
configuration 2 

The above results indicate that RAM size might limit 
the platform performance, so we configure the Data 
Lake with different RAM (Table 4). Each configuration 
was deployed to estimate the SoC of 4,900 KB battery 
data. Figure 6 shows that increasing RAM size can 
reduce execution time. This result shows that the digital 
twin platform is affected by memory size availability. 
Strong exponential relation was present, indicated by 
the R2 value of 0.99. This exponential relation between 
execution time and RAM size suggests an optimum 
number size of RAM. At some point, adding more will 
only slightly reduce the execution time. 
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Table 4 Data Lake for different ram sizes 

vCPU 
(core) 

RAM 
(GB) 

8 18 
8 16 
8 32 
8 64 

 

 
Figure 6 Execution time for different RAM size 
configuration 

Further, we also configured the Data Lake with different 
CPU cores (Table 5). As Figure 7 suggests, adding more 
computation power (CPU cores) can reduce execution 
time. Although the trendline correlation (R2) was not as 
strong as in previous results, it suggests that upsizing 
computation power makes task execution faster than 
expanding memory sizes. 

Table 5 Data Lake for different CPU core 

vCPU 
(core) 

RAM 
(GB) 

1 64 
2 64 
4 64 
8 64 

 

 
Figure 7 Execution time for different CPU core configuration 

We summarize the result of the performance test in 
Table 6. Doubling the CPU cores of Configuration 2 
reduces computation time by more than quadrupling 
RAM size. Notice that the Data Lake with 8 CPU cores 
and 64 GB RAM is only slightly better than the 16 GB 
RAM with the same number of cores. It means the 

platform performance is affected by computation 
power.  

Table 6 Performance test summary 

vCPU 
(core) 

RAM 
(GB) 

Execution 
Time 
(seconds) 

Condition 

4 16 1320 Configuration 2 

8 16 1162 Doubling CPU core of 
Configuration 2 

4 64 1189 Quadrupling RAM size of 
Configuration 2 

8 64 1157 

Doubling CPU core and 
Quadrupling RAM size of 
Configuration 2 
(Configuration 1) 

4 Conclusion 
The result of performance tests suggests that SoC 
estimation is a computation-intensive process. Neural 
network SoC estimation was a heavily repeating 
calculation pattern because of its multiplication 
between the input and weight matrix. Another way to 
improve execution time is parallel computing via GPU. 
Adding GPU to the existing digital twin platform will 
be our future research. 
Although computation resources affect the digital twin 
platform performance more than RAM or memory 
sizes, adequate RAM is also necessary to ensure optimal 
computation time. At this point, we only manage to 
collect four data points for the CPU variation test. More 
data points are required to have a better R2 value. 
Hence, we will continue our test with different 
variations of CPU and RAM to get more data points. 
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