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Abstract  

The development of autonomous vehicle systems has progressed rapidly in recent years. One challenge that persists 
is the capability of the autonomous system to respond to human drivers. Human behavior is an integral part of 
driving; thus, driver behavior determines changing lanes and speed adjustments. However, human behavior is 
unpredictable and immeasurable. Some traffic accidents are caused due to the erratic behavior of the driver. 
Although, traffic laws, such as in Indonesia, regulate the use of lanes concerning the vehicle’s speed. The drivers’ 
behavior in the lane is more likely to be influenced by the regulation. This paper proposes a novel method of 
predicting drivers’ behavior by utilizing the concept of fuzzy Hidden Markov Model (fuzzy HMM). HMM has been 
proven reliable in predicting human behavior by observing measurable states to determine unmeasurable hidden 
states. The use of fuzzy logic is to mimic the way that humans perceive the speeds of other vehicles. The fuzzy logic 
determines the relative observed state of other vehicles according to the measured velocity of an ego vehicle and the 
observed state of observed vehicles. Observation data is obtained by equipping an ego vehicle with an action camera. 
The observed data, in the form of a video, is then discretized every 2 seconds. The resulting sequence of images is 
processed to determine several variables: speed and state of the observed vehicles (lane position and speed) and the 
time instance of the observation. The fuzzy HMM is generated based on observational data. A predictor created 
using fuzzy HMM equipped with a training and prediction algorithm successfully predicts the behavior of other 
drivers on the road. 
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1 Introduction 
Autonomous vehicle systems have progressed rapidly 
in recent years. Several autonomous systems have been 
deployed in traffic, either commercially or for research 
purposes. However, there are limitations when 
autonomous systems have to respond to maneuvers 
done by human drivers. Human drivers are 
unpredictable due to the unique behavior that each 
driver possesses. According to [1], there are four 
categories of on-road driving behavior, which are 
aggressive, conservative, professional, and 
experienced. The classifications are made based on 
several factors such as acceleration, driving experience, 
and number of accidents. Therefore, it can be inferred 
that human drivers tend to follow certain behavior while 
driving. Another factor that heavily influences driver 
behavior is the regulation that applies on the road. In 
Indonesia, one of the regulations that apply in the use of 
lanes is stated in [2]. The regulation states that all 
drivers on a multi-lane road must use the left lane in 
normal conditions. Moreover, using the right lane can 

only be for vehicles with higher speeds or intending to 
overtake other vehicles. Therefore, the regulation is 
taken as a reference for modeling the driver’s behavior. 

Driving behavior has been modeled in [3][4] by 
utilizing Hidden Markov Model (HMM) approach. 
According to a recent survey [5], modeling driver 
behavior with HMM has proven to generate accurate 
behavior predictions. However, previous research only 
generates predictions for the person driving that is 
driving the vehicle. This paper proposes modeling 
driver behavior with HMM is also applicable in 
predicting the behavior of other drivers surrounding an 
autonomous system or human driver while driving an 
ego vehicle. The behavioral model is generated using a 
fuzzy HMM approach based on real-time 
environmental observations. Based on [5], fuzzy HMM 
has better accuracy than other HMM-based modeling 
methods. Experiments are carried out by observing real-
time driving data by equipping an ego vehicle with an 
action camera. 
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2 Fuzzy HMM 

2.1 Hidden Markov Model 
HMM is a model that is derived from the concept of 
Markov chain. Markov chain defines the changes of 
states from a certain system based on a probability 
distribution [6]. HMM or other Markov models are 
developed based on the assumption that for each random 
variable (𝑋!, 𝑋", … , 𝑋#) in a time series, the newest 
variable at a time 𝑡 depends only on the previous variable 
at time 𝑡 − 1. Equation (1) defines the probability of the 
random variables occurring sequentially. ℙ(𝑋#|𝑋#$!) is 
the probability of the variable 𝑋# occurring due to the 
previous variable 𝑋#$!.  

ℙ(𝑋!, 𝑋", … , 𝑋#)
= ℙ(𝑋!)ℙ(𝑋"|𝑋!)…ℙ(𝑋#|𝑋#$!) 

(1) 

These random variables are also known as states on a 
Markov model. Most systems have states that are 
measurable and observable. HMM plays a key role in 
representing systems with an unobservable state, such as 
human driving behavior. Several researchers, such as 
[3][4], have used HMM to define human driving 
behavior. According to [7], there are 5 main components 
of an HMM: 

1. Set of 𝑁-hidden states 

𝑺 = [𝑆! , 𝑆", … , 𝑆%] (2) 

2. Set of 𝑀-observed states 

𝑶 = [𝑂!, 𝑂", … , 𝑂&] (3) 

3. Transition Probability Matrix (TM) 

TM (𝑨 ∈ ℝ%×%) represents the probability of 
transition from one hidden state 𝑠( to another 
hidden state 𝑠) . The elements of TM are defined 
by 

𝑎(,) = ℙ9𝑠)(𝑡 + 1);𝑠((𝑡)< 

=𝑎(,) = 1
%

)+!

 
(4) 

4. Emission Probability Matrix (EM) 

EM (𝑩 ∈ ℝ%×&) represents the probability of the 
hidden state 𝑠( occurring due to the observed state 
𝑜). The elements of EM are defined by 

𝑏(,) = ℙ9𝑜)(𝑡);𝑠((𝑡)< 

=𝑏(,) = 1
%

)+!

 
(5) 

5. Initial Probability Distribution 

The vector 𝚷 = [𝜋!, 𝜋", … , 𝜋%] ∈ ℝ% is used to 
define the initial probability distribution of each 
possible hidden state in the system. The elements 
of 𝝅 are defined by 

𝜋( = ℙD𝑠((1)E (6) 

Based on the components mentioned, an HMM model, 
therefore, is a tuple 𝜆 = (𝝅,𝑨, 𝑩). This paper proposes 
to model the human driving behavior based on HMM 
with the velocity of an observed vehicle as the observed 
state and the chosen lane of an observed vehicle as the 
hidden state. Information from observed vehicles is 
obtained by an ego vehicle equipped with a camera. 
Figure 1 illustrates the difference between an ego and an 
observed vehicle. 

2.2 Fuzzy HMM 
Fuzzy HMM is an improved version of HMM that 
combines fuzzy logic and HMM to model a system. 
There are several applications of fuzzy HMM, such as 
for driving behavior [8], speaker and speech recognition 
[9], and multiple sequence alignment [10]. Based on [5] 
and [8], driving behavior is best modeled with fuzzy 
HMM. Fuzzy HMM is applied to model an ego vehicle 
driver behavior. However, an alternative form of the 
fuzzy HMM is introduced in this paper to model the 
behavior of other drivers surrounding the ego vehicle.  

 
Figure 1 Illustration of ego and observed vehicle 

 
Figure 2 Fuzzy set for HMM 
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The decision-making of human drivers is unpredictable 
and imprecise; hence, fuzzy logic is an appropriate 
solution to assist HMM in modeling human behavior. In 
this paper, fuzzy logic is utilized to mimic how humans 
determine other vehicles’ velocities by comparing the 
measured velocity of the ego vehicle (𝑣,-.) and the 
observed state of observed vehicles (𝑂/). The proposed 
fuzzy logic to fulfill the requirements is represented by 
Figure 2 and (7). 

⎩
⎪
⎨

⎪
⎧ 𝑂/ = 𝑆𝐿; 			𝜇0! + 0.5

				𝑂/ = 𝐸𝑄; 	 U
	𝜇0! + 0.25
	𝜇0" + 0.25

𝑂/ = 𝐹𝑇; 			𝜇0" + 0.5

 

 

(7) 

Figure 2 represents the fuzzy set for determining the 
relative observed vehicle state based on the velocity of 
the ego vehicle. The output from the fuzzy set is a degree 
of membership for both low-speed 𝜇0!  and high-speed 
𝜇0" . The values for each 𝜇0!  and 𝜇0"  are processed 
further according to the observation state (𝑂/) of the 
observed vehicles. There are three states for observed 
vehicles, namely slower than (𝑆𝐿), equal to (𝐸𝑄), or 
faster than (𝐹𝑇) the ego vehicle. Each state will be 
processed further with the following relations: 

Y	
𝜇0! ≥ 𝜇0"; 			𝑉/ = 𝑣1
𝜇0! < 𝜇0" ; 			𝑉/ = 𝑣2

 (8) 

From (7), the value of 𝜇0!  and 𝜇0"  will be updated based 
on 𝑂/. Most of the time, drivers tend to stay in their 
current lane at lower speeds. For example, in the case of 
driving in Indonesia, vehicles are forced to move at 
lower speeds because, most of the time, the traffic 
surrounding the vehicle is densely packed. Therefore, 
the HMMs must be divided according to the observed 
vehicle speed. Equation (8) determines 𝑉/, also known 
as the relative observed states. There are only two types 
of 𝑉/, which are low-speed state (𝑣1) and high-speed 
state (𝑣2). If 𝜇0!  is higher than 𝜇0" , the relative observed 
state is a low-speed state (𝑣1) and vice versa. Every 
value of 𝑉/, for each time instance 𝑘, is accumulated into 
the vector 𝑽 = [𝑉!, 𝑉", … , 𝑉/]. The vector 𝑽 will be 
utilized for the HMM to predict the highest possible 
hidden state for the observed vehicles. 

 
Figure 3 Block diagram for the prediction with the 
fuzzy HMM 

Figure 3 shows the block diagram that represents the 
prediction process with the fuzzy HMM, as proposed in 
this work. The fuzzy logic receives two observation data, 
which are 𝑂/ and 𝑣,-. . Moreover, the vector 𝑽 at time 
instance 𝑘 − 1 is utilized to accept the fuzzy logic 
output. After the fuzzy logic determines the relative 
observed state at 𝑘, the HMM prediction block uses the 
vector 𝑽 at time instance 𝑘 to generate the predicted 
hidden state vector of observed vehicle 𝑴. The 
prediction is carried out by utilizing a prediction 
algorithm. Furthermore, vector 𝑽 is used by a training 
algorithm to update the low and high-speed HMM. Both 
algorithms are discussed in the next sub-section. 

2.3 Algorithms 
The HMM can only function as far as modeling or 
representing a system. As stated in the previous sub-
section, the HMM must be provided with a training and 
prediction algorithm. In this investigation, the Baum-
Welch algorithm [11] and the Viterbi algorithm [12] are 
applied to train HMM and generate the predictions, 
respectively. The algorithms are commonly used with 
HMM to generate the prediction based on a trained 
model. Both algorithms were adjusted to match the 
parameters used in this paper. The algorithm receives the 
relative observed state 𝑽 rather than the observed state 
𝑶. Moreover, the algorithm iterates for every time 
instance 𝑘 is further discussed in the next section. 

The Baum-Welch algorithm is a form of Expectation-
Maximization (EM) algorithm that searches for the best 
maximum estimated parameters from a statistical model. 
According to [11], the Baum-Welch algorithm optimizes 
parameters to a local optimum point. The algorithm has 
several phases, which are the forward phase, the 
backward phase, and the update phase. The 𝛼-table is 
generated in the forward phase, and the 𝛽-table is 
generated in the backward phase. Afterward, in the 
update phase, the algorithm calculates the values of 𝛾 
and 𝜉 based on the values of 𝛼 and 𝛽 to update the values 
of 𝚷, 𝑨, and 𝑩. Each matrix is updated by changing the 
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elements from 𝜋, 𝑎, and 𝑏 to 𝜋∗, 𝑎∗, and 𝑏∗ 
consecutively. In this paper, the Baum-Welch algorithm 
is used to update the HMM every time the system 
receives observation data. 

Next, the Viterbi algorithm is an algorithm that searches 
for the best sequence of states from an HMM. According 
to [12], the Viterbi algorithm finds the most likely 
hidden state sequence based on a sequence of 
observations. The steps of the Viterbi algorithm are 
written in Table I. The algorithm finds the best possible 
hidden state sequence based on the values of 𝛿 and 𝜓. 
The variable 𝛿 represents the possibility of the highest 
possible hidden state to happen (𝑆∗), whereas 𝜓 
represents the index of the highest possible hidden state. 
The sequence of the hidden states is appended to the 
vector 𝑴, which represents the estimated movement 
prediction of the observed vehicles. 

Table 1 Pseudocode for The Viterbi Algorithm 

Viterbi Algorithm 
1: Input: 𝜆 = (Π,𝐴, 𝐵), 𝑉,𝑀 
2: for 𝑖 = 1,2,… , 𝐼 do 
3: // Initialization 
4: 𝛿!(1) = 	𝜋!𝑏!(𝑉") 
5: 𝜓!(1) = 0 
6: // Recursion 
7: for 𝑗 = 1,2,… , 𝑁 do 
8: for 𝑘 = 1,2,… , 𝜏 do 
9: 𝛿#(𝑘) = max

" % ! % &
=𝛿!(𝑡 − 1)𝑎!,#A𝑏#(𝑉() 

10: 𝜓#(𝑘) = 𝑎𝑟𝑔 max
"	%	!	%	&

=𝛿!(𝑡 − 1)𝑎!,#A 
9: // Termination 
10: 𝑝∗ = max

"	%	!	%	&
δ!(τ) 

11: 𝑆∗(𝜏) = 𝑎𝑟𝑔 max
"	%	!	%	&

δ!(τ) 
12: // Backtracking 
13: for 𝑘 = 𝜏 − 1, … ,1 do 
 𝑆∗(𝑘) = 𝜓+∗((-")(𝑘 + 1) 
 𝑀 ← 𝑆∗(𝑘 = 1,2, … , 𝜏) 
17: return 𝑀 

 

3 Results and Discussion 
3.1 Behavior model 
The following configuration shows the HMM states 
which are created in this work: 

1. Hidden state: 𝑺 = [𝐿, 𝑇, 𝑅] 
2. Observed state: 𝑶 = [𝑆𝐿, 𝐸𝑄, 𝐹𝑇] 
3. Relative observed state: 𝑽 = [𝑣1 , 𝑣2] 

𝚷 = gℙD𝐿(1)E ℙD𝑇(1)E ℙD𝑅(1)Eh 

𝑨 = i
ℙ(𝐿|𝐿) ℙ(𝐿|𝑇) ℙ(𝐿|𝑅)
ℙ(𝑇|𝐿) ℙ(𝑇|𝑇) ℙ(𝑇|𝑅)
ℙ(𝑅|𝐿) ℙ(𝑅|𝑇) ℙ(𝑅|𝑅)

j 
(9) 

𝑩 = i
ℙ(𝑣1|𝐿) ℙ(𝑣2|𝐿)
ℙ(𝑣1|𝑇) ℙ(𝑣2|𝑇)
ℙ(𝑣1|𝑅) ℙ(𝑣2|𝑅)

j 

The possible hidden states are left lane (𝐿), transition 
lane (𝑇), and right lane (𝑅), whereas the possible 
observed and relative observed states are as mentioned 
in the previous section. The ‘transition lane’ acts as a 
buffer state before any observed vehicle changes lanes. 
While the ego vehicle observes the environment, any 
vehicle in the ‘transition lane’ is expected to be cruising 
normally following its current lane. Experimental data 
are obtained to determine the values of the HMM, which 
are divided into HMM for low speed and high speed. 
The probabilities defined for the initial probability, TM, 
and EM are stated in (9).  

 
Figure 4 Example of discretized observation images 

The data for the HMM are obtained by equipping an ego 
vehicle with a GoPro HERO7 action camera. The 
camera is mounted in the vehicle’s middle section to 
record other vehicles surrounding the ego vehicle. Only 
vehicles in front of the ego vehicle will be considered 
observed vehicles. Afterward, the videos are discretized 
to generate images every 2 seconds. The discretization 
time is chosen based on (cite green) that states drivers 
have a 1.5 second response time for unexpected events. 
The predictions are generated for 2 seconds ahead of the 
current time. Therefore, human drivers or autonomous 
vehicle systems have a response window from the 
observation to the prediction. An example of the 
observation data, in the form of images, is shown in 
Figure 4. 

𝚷𝐇 = [0.22	0.60	0.18]		 (10) 
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	𝑨𝑯 = m
0.49 0.52 0.0
0.34 0.36 0.30
0.0 0.52 0.49

q 

𝑩𝑯 = m
0.59 0.41
0.53 0.47
0.42 0.58

q 

𝚷𝑳 = [0.22	0.60	0.18]		 

	𝑨𝑳 = m
0.35 0.65 0.0
0.11 0.79 0.10
0.0 0.68 0.32

q 

𝑩𝑯 = m
0.59 0.41
0.71 0.29
0.40 0.60

q 

 

(11) 

Figure 4 shows examples of the discretized images, each 
number of 𝑘 representing 2 seconds in real-time. The 
HMM for low and high speeds is generated according to 
the observation data. Moreover, Indonesian lane usage 
regulation [2] is chosen as a reference for the model. 
According to the regulation, the leftmost lane is more 
likely to be used by slower vehicles, whereas the 
rightmost lane is more likely to be used by faster 
vehicles. Based on the observations and the regulation 
information, the HMM for low and high speed is stated 
in (10) and (11) consecutively. 

3.2 Prediction Result 
The fuzzy HMM based on Figure 3 is utilized as the 
predictor to find the best possible hidden states from 
several observation data. There are 1781 data obtained 
from the environment. The predictor will generate the 
best possible hidden states after receiving observation 
data. An example of hidden state prediction and ground 
truth is illustrated in Figures 5 and 6. The data in Figure 
5 is an observation at an average 𝑣,-.  of 6 meters per 
second, whereas Figure 6 shows data observed at an 
average 𝑣,-.of 16 meters per second. In both figures, the 
blue lines represent the ground truth hidden state, and the 
orange lines represent the predicted hidden state. The 
ground truth hidden states are determined based on 
observation images, such as in Figure 4. 

 
Figure 5 Low speed prediction example 

Based on Figure 5, at low speeds, the predictor can 
predict the movement of the observed vehicle before it 
changes to the left lane at 𝑘 = 8. However, the predictor 
misses the right lane change at 𝑘 < 3. Furthermore, in 
Figure 6, the predictor can predict the left lane change of 
the observed vehicle at 𝑘 = 2. There are some 
mispredictions where the predictor believes the observed 
vehicle did a right lane change and left lane change 
consecutively. 

 
Figure 6 High speed prediction example 

According to the prediction results, the predictor 
manages to give movement predictions for the observed 
vehicles. From all the observation data, the predictor has 
a successful prediction rate of 59.15%. The percentage 
is divided into 95.44% successful prediction at low 
speed and 51.59% at high speed. The difference in 
successful prediction percentage shows that driver 
behavior at low and high speeds differ significantly. 
Based on the model data,  drivers tend to stay in their 
own lane in lower speed conditions rather than change 
to other lanes. The HMM is successful in representing 
low-speed behavior. Moreover, the low successful 
percentage in high-speed prediction indicates that the 
HMM model must be improved further to generate 
better predictions. 

The predictor is given a score of 1 if the prediction is the 
same as the ground truth. Moreover, a score of 0.5 is 
given if the prediction is the right or left lane and the 
ground truth is the transition lane. This is done because 
the predictor’s purpose is to warn human drivers or 
autonomous systems. Some mispredictions, therefore, 
are tolerable because if the prediction is a lane change, 
any human drivers or autonomous systems can prepare 
themselves before deciding on any maneuvers. The 
condition only applies if the prediction is a lane change 
and the observed vehicle still cruises at its current lane. 
Therefore, a prediction percentage near 50% implies that 
the predictions are more preemptive rather than accurate. 

The mispredictions are mostly caused because the fuzzy 
HMM must be further tuned according to the real-time 
data. There are some ways to increase the accuracy of 
the fuzzy HMM predictor. First, the number of fuzzy 
HMM can be increased to three, and another model can 
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be added for an exceedingly higher speed. Like lower 
speeds, drivers at higher speeds tend to follow their 
current lane. Based on the 1781 data used in this work, 
the trend shows that the drivers rarely change lanes at 
speeds over 20 meters per second. Another way to 
increase the predictor’s accuracy is to improve the fuzzy 
HMM. The current predictor is limited because the 
model relies on statistical values only. 

4 Conclusion 
This paper delivers a novel approach to predicting driver 
behavior based on an environmental observation 
approach. The purpose of predicting driver behavior is 
to help human drivers or autonomous systems in 
responding to other drivers in their environment. Driving 
behavior is unpredictable and immeasurable; however, 
this investigation proves that driver behavior can be 
modeled and predicted using fuzzy HMM based on the 
perspective of an ego driver. The prediction is generated 
with lane changes as hidden states, which have three 
possible states, namely the left lane, transition lane, and 
right lane. Furthermore, ego vehicle speed and observed 
vehicle speed estimation are utilized as the observed 
state. The fuzzy HMM parameters are determined based 
on the observation data and regulation that applies to 
Indonesian roadways. 

According to the experimental results, the predictor 
successfully predicted driving behavior for 59.15% over 
1781 data. Specifically, the predictor has a higher 
success rate in predicting at low speed than at high 
speed. The difference in success rate shows that the 
predictions at low and high speeds are distinct from one 
another. Improvements must be made for the high-speed 
HMM to generate better prediction results. Moreover, 
the predictor has a successful prediction percentage near 
50%, indicating that the predictor generates preemptive 
predictions rather than accurate predictions. This 
conclusion is based on the scoring conditions stated in 
the previous section for evaluating the predictor. 

Future work includes improving the fuzzy HMM 
predictor. Higher prediction accuracy can be obtained by 
enhancing the predictor through ways mentioned in the 
previous paragraph. This investigation proves that 
predictions can be made for vehicles cruising in front of 
an ego vehicle. Further improvements can be made to 
predict the movements of every vehicle surrounding the 
ego vehicle, not only vehicles in front of it. Therefore, 

implementing multiple cameras and object detection 
algorithms can help to improve the predictor in 
predicting multiple vehicles at once. Implementing other 
sensors can increase the number of observed physical 
information, henceforth increasing the predictor’s 
accuracy. 
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