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Abstract  

The rapid advancement of information technologies led to the rapid growth of various aspects, one of which is 
autonomous vehicles. Digital twin technology is being frequently developed in autonomous vehicle research, 
enabling real-time remote monitoring and control of the vehicle’s physical assets. This technology can reduce 
maintenance costs and risks as well as prevent and speed up accident management. This paper proposes a digital 
twin model for the autonomous tram, one of the vehicles widely explored due to its safety, low emissions, and high 
capacity. In this research, the proposed digital twin model is utilized to virtually represent the kinematics of the tram 
prototype in a 2D model from data sent via Message Queuing Telemetry Transport (MQTT) protocol, enabling real-
time remote control with low-band consumption. Virtual representation of the tram prototype is gathered via physical 
sensors and Long Short-Term Memory (LSTM) as the virtual model and controlled by a Stanley controller. The 
results confirmed that the use of the proposed digital twin model could remotely monitor and control the autonomous 
tram prototype in real-time conditions. 
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1 Introduction 
Information technology has developed rapidly over the 
last few decades. This technology has changed various 
aspects towards a more effective and cost-efficient 
business, enabling the industry to grow continuously. In 
the meantime, Digital twin (DT) is a modern technology 
that has recently been much examined by many 
researchers for predictive analysis in various case 
studies, one of which is in the development of 
Autonomous Vehicles (AV). With the rise of the 
industrial era 4.0, the emergence of DT technology 
brings new applications to AV simulation. This 
technology enables autonomous vehicles, including 
trams, to simulate vehicle information in various 
scenarios, such as missing position information [1], [2]. 
This approach can potentially reduce AV failure related 
to position sensor interferences, e.g., if the tram runs 
under trees, tall buildings, and tunnels. 

Digital Twin represents a physical object or assembly 
using integrated simulations and service data [3]. The 
DT concept was introduced initially by Michael Grieves 
to synchronize the physical product and the information 

contained in the virtual product dynamically, enabling 
an instantaneous perspective on how the product meets 
its design goals [4]. Xiong et al. [5] applied a similar 
concept to the AV case by creating a DT-assisted 
simulation in a car-following scenario, creating a safe 
and efficient simulation test implementation.  

The most common objective of an autonomous vehicle 
is to follow the designated trajectory. Previous research 
has shown several proven algorithms that enable 
vehicles to follow the trajectory according to the 
position information [6], [7]. The Stanley controller is 
one of the simplest path-following algorithms 
commonly used in autonomous vehicles. This path-
following algorithm demonstrates the ability of the 
controller to track trajectories over steep and wavy 
terrain [8]. However, the existing path following 
algorithm requires reliable position data accuracy and is 
highly dependent on it. The event of missing position 
information greatly affects its performance. 

Therefore, in this paper, a DT model in a path-following 
scenario is proposed to simulate the missing position 
information scenario for autonomous trams, one of the 
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widely explored autonomous vehicles which enable 
mass transportation in the city [9], [10] to be 
implemented. To realize the idea mentioned, the main 
components of the proposed system consist of the 
following: 
(1) Long Short-Term Memory (LSTM) – a neural 

network model used as a virtual model that 
generates predictions of vehicle localization data. 

(2) Stanley controller – a path-following algorithm 
that allows the controller to maintain the tram to 
move in the desired trajectory path.  

The tram prototype was used as the research subject 
implementation in this investigation. This prototype has 
various localization sensors, such as an Indoor 
Positioning System (IPS), an Inertial Measurement Unit 
(IMU), and a wheel encoder. The localization sensor 
data is then processed via the Unscented Kalman Filter 
(UKF) estimation algorithm, providing more accurate 
localization [11], [12]. The DT of this prototype is 
connected to the physical device through the Message 
Queuing Telemetry Transport (MQTT) communication 
network, enabling remote monitoring and control of the 
autonomous tram [13].  

Based on the above explanation, the main objective of 
this investigation is to develop a digital twin model of 
the autonomous tram and to enhance the position 
estimation using a virtual model in the case of any 
missing position information. 

2 Proposed Framework 
DT model is proposed using the definition explained in 
the previous section. As shown in Figure 1, the DT 
model framework is divided into two parts: physical 
twin components and digital twin components. The 
tram of physical twin components acquires physical 
localization sensor data utilizing the autonomous 
driving controller. The controller also maintains the 
tram on a trajectory path using sensor data and sends the 
data to the digital twin via a wireless router. Then the 
physical data is used as input to a virtual model as a 
position prediction model in the scenario of missing 
position information. The model results are then stored 
and sent back to the controller. 

3 Designed System 
The implementation framework of the proposed DT 
model is shown in Figure 2. The sensor component 
takes physical data, which is then sent over the wireless 
network to the digital twin. In the digital twin, the 
physical data is trained into a virtual model made of 

LSTM. The virtual model data is then stored and 
displayed on the Human Machine Interface (HMI). The 
virtual model is also sent over the wireless network to 
the autonomous driving controller, which contains the 
Unscented Kalman Filter (UKF) algorithm to estimate 
the position by combining heterogeneous sensor data 
and the Stanley controller algorithm to determine the 
steer and speed commands to the steering and rear 
wheel.  

In Figure 2, the implementation components include 
seven parts: sensors, network layer (wireless router and 
MQTT broker), vehicle DT, data storage and model 
evaluation, Human Machine Interface (HMI), 
autonomous driving controller, and actuators. Each of 
the components is described in detail in the following 
sections. 

 

Figure 1 The proposed digital twin framework. 

 

Figure 2 The implementation framework of the DT model. 
The black dotted lines indicate a group of components in the 
autonomous tram. The blue dotted lines indicate the network 
layer between the physical and digital twins. The solid lines 
indicate the flow of communication data. 
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3.1 Sensors 

Sensors are one of the most crucial components in the 
system as they are responsible for sensing the condition 
of the tram in real-time cases. In this work, the tram was 
equipped with three sensors: Indoor Positioning System 
(IPS), an Inertial Measurement Unit (IMU), and a wheel 
encoder. IPS is a sensor system that can detect the 
position of objects inside a building using radio waves, 
magnetic fields, and acoustic signals [14], [15]. Further, 
IPS was used to replace the GNSS because the 
experimental investigation was carried out indoors. 
IMU is a sensor device consisting of three main parts: 
an accelerometer, a gyroscope, and a magnetometer. 
This sensor was equipped to measure the tram’s specific 
force, angular rate, and orientation [16]. To receive 
velocity information of the tram, a wheel encoder was 
attached to the rear wheel of the tram [17]. The rear 
wheel of the tram is mounted on a rotating rod having 
grating holes that light can pass through. When the 
wheel rotates, the grid blocks and transmits light from 
the source to the sensor, forming pulse waves.  

3.2 Network Layer 

The network layer is used to connect the physical twin 
and digital twin. This study uses a wireless router as a 
transmitter to the internet network. Information is sent 
through the router to the MQTT broker, a link that 
allows MQTT clients to communicate. 

Figure 3 shows that in MQTT, clients are divided into 
two components: the sender, known as the publisher, 
and the recipient of the data, also known as the 
subscriber. The two components are connected by a 
third component, the MQTT broker, which directs 
messages from publishers to subscribers’ endpoints on 
the same topic. 

 

Figure 3 MQTT communication protocol illustration for the 
autonomous tram. 

3.3 Vehicle DT 

Vehicle DT consists of physical data received from 
sensors and a virtual model built by LSTM. A virtual 
model is built to predict vehicle localization data in the 
case of missing position information scenarios [1]. 
LSTM is applied to replace the GNSS with its 

independence from external conditions. LSTM can 
model sequential data more accurately than other 
machine learning algorithms because it has a gating 
mechanism in each hidden layer, namely input, forget, 
and output gate, so LSTM can remember essential 
information from data [18]. The hidden layer has 
outputs as in the following equations with the layer 
details represented in Figure 4. 

𝑐(𝑡) = 𝑓' ∗ 𝑐(𝑡 − 1) + 𝑖' ∗ 	𝑐'. 	 (1) 

ℎ(𝑡) = tanh4𝑐(𝑡)5 ∗ 𝑜'  (2) 

where 𝑐(𝑡) is the state cell that stores the overall 
condition of the cell, 𝑐'.  as the newly processed 
information, and ℎ(𝑡) is the hidden cell that focuses on 
storing the most recent state. 

 

Figure 4 The architecture of LSTM. 

The LSTM model is trained using the physical data to 
build a reliable model. The model architecture is built 
using LSTM, dropout, and layers with Sigmoid and 
ReLu activation functions. 

3.4 Data Storage and Model Evaluation 

LSTM model predictions are then stored in a database 
together with physical data received from the sensors. 
The position predictions are evaluated and compared 
with the actual position measurement. At the same time, 
the UKF estimation algorithm utilizes the predictions as 
the correction in the case of missing position 
information scenarios; then, the result is also stored in 
this database. All data in the database are visualized to 
users through a Human Machine Interface (HMI). 

3.5 HMI 

In implementing this prototype tram system, the user 
can provide target path input to the tram actuator 
through the HMI and automatically command the tram 
to move into the designated path using the Stanley 
controller algorithm. After the tram is active, each data 
sent by the physical sensors is processed to the virtual 
model and displayed on the HMI. The received position 
data is depicted as a line representing the path formed 
by the tram based on the localization system used. The 
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HMI displays the tram’s real-time speed, orientation, 
and acceleration data. This HMI can also display the 
predictions from the LSTM virtual model compared to 
the actual IPS measurement results. 

3.6 Autonomous Driving Controller 

An autonomous driving controller is a controller 
module that includes UKF and Stanley controller 
algorithms in this research. UKF algorithm is applied to 
estimate the tram position in all scenarios. UKF is one 
of the Kalman filter developments that performs 
estimation by taking several sigma points and sample 
points around the current data average based on the 
covariance [19]. There are two stages in UKF, namely, 
the prediction and correction stages. In the prediction 
stage, UKF predicts the desired variable and the 
covariance matrix, which are written in equations 3 and 
4. Both predictions are then corrected in the correction 
stage using more accurate data, such as IPS or LSTM 
prediction. The outputs of this stage are represented in 
equations 5 and 6. 

𝐱89 = ∑ 𝛼(<)	𝐱89
(<)=>

<?@  (3) 

𝐏B9	 = ∑ 𝑤(<)4𝐱89
(<) −	𝐱89	5=>

<?@ 4𝐱89
(<) −	𝐱89	5

D
+ 𝐐9FG (4) 

𝐱HI = 	𝐱89 +	𝐊I	4𝑦H9L − ∑ 𝛼(<)𝑦H9
L(<)=>

<?@ 5 (5) 

𝑃N = 	∑ 𝛼(<)	4𝑦H9
L(<) − 𝑦H9L 54𝑦H9

L(<) − 𝑦H9L 5
D
+ 𝑅9=>

<?@  (6) 

The position estimation from UKF is used as a reference 
input for the Stanley controller to determine the next 
tram control command. Stanley controller is a path-
tracking approach algorithm that applies the front axle 
as the reference point [6]. 

Figure 5 shows the principle of the Stanley controller in 
following the target trajectory. This algorithm 
minimizes orientation error, 𝜓(t), and cross-track error, 
e(t). The output of steering angle control is obtained 
through the following equation, 

𝛿(𝑡) = 𝑘G ∗ 𝜓(𝑡) + tanFG S
9T∗U(')
GVWX(')

Y (7) 

The steering angle command was sent to the steering 
wheels as actuators. 

3.7 Actuators 

The system’s actuator is a servo motor for controlling 
the steering wheel and a dynamo motor for controlling 
the speed of a tram prototype. The servo motor used in 
this research is MG996R. This servo can rotate 180 
degrees, allowing this servo to represent the steering 

wheel. For the implementation of this dynamo motor, 
an 88002-train motor is used to control speed through a 
pulse width modulation (PWM) control mechanism. 

All components of this system are connected through 
various communication protocols. The communication 
protocol used in the design of the system is illustrated 
in Figure 6. This communication involves a Wireless 
Local Area Network (WLAN), MQTT, Serial, 
Universal Asynchronous Receiver-Transmitter 
(UART), and Inter-Integrated Controller (I2C). The 
application of protocols for each component 
corresponds to the component’s design. For example, 
WLAN and MQTT are used for long-distance 
connections without cables so that the implementation 
can be used remotely. I2C is used to reduce the need for 
pins used in sensor readings compared to serial, while 
UART is used to accommodate communication 
between controllers and IPS.  

The design of the entire system is then implemented in 
the form of a prototype. It will be explained in more 
detail in the next section. 

 

Figure 5 Stanley controller’s control law illustration. 

 

Figure 6 The communication topology of the DT model. The 
solid black lines indicate components in the autonomous 
tram. The solid blue lines indicate the communication 
protocol. 

4 System Implementation 
According to the proposed system, the DT 
implementation platform has been developed. 
Commands to the tram can be given through the HMI 
that has been designed. Through this HMI, the tram’s 
movement was also visualized in real-time with UKF 
position estimation with and without the LSTM model 
correction. All the data from HMI to tram and vice versa 



Digital Twin Model Development for Autonomous Tram Localization 59 
 
are sent through wireless routers and an MQTT broker. 
Resembling the designed HMI, a track is built inside a 
room as a ramp for tram movement. The tram is placed 
on the track with all sensors, actuators, and an 
autonomous driving controller equipped in the tram’s 
body. The DT testing platform is shown in Figure 7.  

 

Figure 7 Proposed system implementation. 

DT implementation is initialized in this research by 
providing the tram target trajectory through HMI. The 
tram is expected to move following the input trajectory. 
During the testing, the IPS was turned off several times, 
representing the missing information of GNSS due to 
environmental disturbances. In this case, the virtual 
model was evaluated to determine whether it could 
replace the position data accurately so that the Stanley 
controller could keep the tram moving in line with the 
track. 

DT implementation was performed 50 times to collect 
more data in IPS working conditions. The data has been 
collected was then used for LSTM model training. The 
model was trained with input data (x train) and output 
data (y train) represented in equation 8, with the result 
shown in Table 1. 

 (8) 

Table 1 LSTM virtual model training performance 

Loss Accuracy X position 
maximum range 

Y position 
maximum range 

0.00104 0.932 -13.12 to 15.14 -14.31 to 9.82 

The model was evaluated by predicting 1000 
timestamps of collected data. Error model predictions 
were compared to the change of position for each time 
step, and the result is visualized in Figure 8.   

  
(a) (b) 

Figure 8 Position prediction error of virtual model on the (a) 
x and (b) y axes. 

The trained model was then implemented in the system. 
During implementation, the trained LSTM model 
predicted changes in tram position in real-time and 
added position data in the previous time step as UKF 
correction data for missing position information 
scenarios. The results of the implementation are 
explained in the next section. 

5 Result and Discussion 
The experimental investigation was done by giving the 
target path from the HMI on the digital twin to the tram 
prototype. The target path is received by the controller 
and processed using the Stanley controller algorithm 
into actuator input. The actuator movement is measured 
by the proposed physical and virtual sensors and then 
transmitted back to the digital twin. The experiment 
results are shown in Figure 9, in which the tram 
prototype moves along the closed area shown as a dark 
grey box where it is assumed that no signal has been 
received from the IPS. It can be seen in the figure that 
there are 4 lines, namely the target line, IPS, localization 
system with LSTM, and localization system without 
LSTM. In the experiments, IPS was turned on and 
became the corrector for the virtual sensor. It causes the 
IPS line, systems with LSTM virtual model, and 
without LSTM virtual model to show similar results. It 
can be seen that the prototype moves along the target 
path using IPS position data under normal conditions 
and the LSTM virtual model for the case of loss of 
position information. Further analysis related to model 
performance is described in Table 2. 

As shown in Table 2, the model’s performance is tested 
by comparing the error during the availability of 
position information and the virtual model using the 
Mean Absolute Error (MAE) metric, which describes 
the average system error in determining the tram 
position. It can be observed that from these metrics, the 
virtual model on the proposed digital twin can eliminate 
system errors without virtual models by 84% on the x-
axis and 81% on the y-axis. 
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Figure 9 Visualization of position estimation experiment on 
digital twin model. 

Table 2 LSTM virtual model training performance 

Position Sensor 
Availability 

Virtual Model 
Availability Axis MAE 

(cm) 

Available Available x 1.42 
y 1.25 

Not Available 
Not Available x 63.60 

y 63.86 

Available x 10.90 
y 14.90 

6 Conclusion 
Research has been carried out to develop a digital twin 
model for the autonomous tram. The digital twin model 
has been successfully implemented on the autonomous 
tram so that it can display physical sensor data along 
with the estimated position of the sensor and virtual 
model in the real-time environment. Several tests 
carried out through the digital twin model show that the 
virtual sensors system can make the Stanley controller 
keep the tram running on the specified path. The test 
results show that the LSTM virtual model can improve 
positioning accuracy and eliminate most position 
prediction errors due to the loss of position information 
by more than 80% based on the MAE metric. 
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