1. Back to IJSTT

International Journal of Sustainable Transportation Technology

Keyword: Modeling

original research article

Lightweight Design and Structural Analysis of a Wheel Rim Using Finite Element Method and Its Effect on Fuel Economy and Carbon Dioxide Emission

Towhidul Islam, Shakik Ahnaf, Md. Muntashir Mamun, Abu Saleh Muhammad Musa

Pages 12-21

Wheel rims made of metal alloy considerably impact the vehicle’s overall weight. Consequently, employing alloys in the design of wheels results in higher fuel efficiency and lower carbon dioxide emissions. Weight reduction of vehicles also leads to better acceleration. Lightweight automotive design has been increasingly popular in recent years as a means of conserving energy and protecting the environment. The rim is an essential feature of the vehicle since it bears a substantial portion of its overall weight. A vehicle’s weight can be greatly reduced by using a lightweight rim. However, the impact of a lightweight rim on improved fuel economy and reduced carbon dioxide emissions has not been widely explored. In this study, a wheel rim has been designed, and a finite element model has been developed considering radial load, where tire pressure has also been considered. A practical experiment with identical parameters had also been carried out. The values of equivalent stress, strain, and deformation for a metal and an alloy which is steel and cast aluminum alloy (A356.0), respectively, have been compared. In terms of structural stability, steel and cast aluminum alloy have shown fairly similar results based on equivalent stress and deformation. However, the use of cast aluminum alloy has greatly decreased the rim’s weight as a result of its low density and high specific strength. Additionally, the aluminum alloy rim has shown superior fuel efficiency and lower carbon dioxide emissions. According to the findings, cast aluminum alloy rims are more feasible when building a vehicle wheel rim since they minimize the wheel’s and vehicle’s weight while maintaining structural strength. It leads to less fuel consumption, which can save fuel costs and is important for energy conservation.
original research article

Thermomechanical Modeling of an Exhaust Manifold

Intan K Kushairi, Mokhtar Awang, Aidil Ab Rahman, Ichsan S Putra, Iman Kartolaksono

Pages 28-32

The commonly used form of transportation mostly relies on-road vehicles nowadays. A vehicle is a mechanism to commute between places with higher efficiency and less time consumption. A vehicle usually consists of multiple working components, in which the engine is well-known to be one of its most crucial components. Although it can be considered the most vital component in a vehicle, the knowledge gaps for an engine are still unlimited. So much more potential can be explored for an engine to reach its maximum capabilities. Part of the perspective that should be explored is to study the engine’s thermal properties. This paper aims to investigate the effect of varying temperatures at the exhaust manifold under a certain amount of time spans. The temperature varied from low to high and vice versa for 6 cycles. The results revealed that the exhaust manifold had undergone an alteration in the strain of the body’s elasticity. Because of that, the displacement of the exhaust manifold, load distribution, and direction have also been affected.